login
A321753
Sum of coefficients of elementary symmetric functions in the power sum symmetric function indexed by the integer partition with Heinz number n.
2
1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, -1
OFFSET
1
COMMENTS
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
FORMULA
a(n) = 1 if n is the Heinz number of an integer partition with an even number of even parts, otherwise a(n) = -1.
EXAMPLE
The sum of coefficients of p(32) = -6e(32) + 6e(221) + 3e(311) - 5e(2111) + e(11111) is a(15) = -1.
KEYWORD
sign,more
AUTHOR
Gus Wiseman, Nov 20 2018
STATUS
approved