login
A321747
Sum of coefficients of elementary symmetric functions in the monomial symmetric function of the integer partition with Heinz number n.
1
1, 1, -1, 1, 1, -2, -1, 1, 1, 2, 1, -3, -1, -2, -2, 1, 1, 3, -1, 3, 2, 2, 1, -4, 1, -2, -1, -3, -1, -6, 1, 1, -2, 2, -2, 6, -1, -2, 2, 4, 1, 6, -1, 3, 3, 2, 1, -5, 1, 3, -2, -3, -1, -4, 2, -4, 2, -2, 1, -12, -1, 2, -3, 1, -2, -6, 1, 3, -2, -6, -1, 10, 1, -2
OFFSET
1,6
COMMENTS
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
FORMULA
a(n) = (-1)^(A056239(n) - A001222(n)) * A008480(n).
EXAMPLE
The sum of coefficients of m(2211) = 9e(6) + e(42) - 4e(51) is a(36) = 6.
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Table[(-1)^(Total[primeMS[n]]-PrimeOmega[n])*Length[Permutations[primeMS[n]]], {n, 50}]
CROSSREFS
Row sums of A321746. An unsigned version is A008480.
Sequence in context: A303707 A335521 A323087 * A008480 A168324 A355939
KEYWORD
sign
AUTHOR
Gus Wiseman, Nov 19 2018
STATUS
approved