login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A321741 Product of the first n terms of A007318 (Pascal), read as a sequence. 0
1, 1, 1, 1, 2, 2, 2, 6, 18, 18, 18, 72, 432, 1728, 1728, 1728, 8640, 86400, 864000, 4320000, 4320000, 4320000, 25920000, 388800000, 7776000000, 116640000000, 699840000000, 699840000000, 699840000000, 4898880000000, 102876480000000, 3600676800000000, 126023688000000000, 2646497448000000000, 18525482136000000000, 18525482136000000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

LINKS

Table of n, a(n) for n=1..36.

Index entries for triangles and arrays related to Pascal's triangle

FORMULA

a(n) = Product_{j=0..n-1} P(n), where P(n) = A007318(n) (as a sequence). - Wolfdieter Lang, Jan 25 2019

EXAMPLE

The 10th term is 18 because the first 10 terms of Pascal's Triangle by row are 1,1,1,1,2,1,1,3,3,1 and 1*1*1*1*2*1*1*3*3*1=18.

MATHEMATICA

FoldList[Times, 1, Rest[Flatten[Table[Binomial[n, k], {n, 0, 7}, {k, 0, n}]]]] (* Amiram Eldar, Nov 18 2018 *)

PROG

(PARI) lista(nn) = {my(i=0, j=0, p=1); for (n=1, nn, p *= binomial(i, j); print1(p, ", "); j++; if (j > i, j = 0; i++); ); } \\ Michel Marcus, Jan 25 2019

CROSSREFS

Cf. A007318, A163866 (partial sums).

Sequence in context: A007039 A025248 A213170 * A101416 A098920 A270557

Adjacent sequences:  A321738 A321739 A321740 * A321742 A321743 A321744

KEYWORD

nonn,easy

AUTHOR

Kei Ryan, Nov 17 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 21 09:14 EST 2019. Contains 329362 sequences. (Running on oeis4.)