login
A321738
Number of ways to partition the Young diagram of the integer partition with Heinz number n into vertical sections.
13
1, 1, 1, 2, 1, 3, 1, 5, 7, 4, 1, 10, 1, 5, 13, 15, 1, 27, 1, 17, 21, 6, 1, 37, 34, 7, 87, 26, 1, 60, 1, 52, 31, 8, 73, 114, 1, 9, 43, 77, 1, 115, 1, 37, 235, 10, 1, 151, 209, 175, 57, 50, 1, 409, 136, 141, 73, 11, 1, 295, 1, 12, 543, 203, 229, 198, 1, 65, 91
OFFSET
1,4
COMMENTS
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
A vertical section is a partial Young diagram with at most one square in each row. For example, a partition (shown as a coloring by positive integers) into vertical sections of the Young diagram of (322) is:
1 2 3
1 2
2 3
EXAMPLE
The a(12) = 10 partitions of the Young diagram of (211) into vertical sections:
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
3 3 2 3 2 1 1 3 2 1
4 3 3 2 2 3 2 1 1 1
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
spsu[_, {}]:={{}}; spsu[foo_, set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@spsu[Select[foo, Complement[#, Complement[set, s]]=={}&], Complement[set, s]]]/@Cases[foo, {i, ___}];
ptnpos[y_]:=Position[Table[1, {#}]&/@y, 1];
ptnverts[y_]:=Select[Rest[Subsets[ptnpos[y]]], UnsameQ@@First/@#&];
Table[With[{y=Reverse[primeMS[n]]}, Length[spsu[ptnverts[y], ptnpos[y]]]], {n, 30}]
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Nov 19 2018
STATUS
approved