login
A321722
Number of non-normal magic squares whose entries are nonnegative integers summing to n.
13
1, 1, 1, 1, 10, 21, 97, 657, 5618, 48918, 494530, 5383553, 65112565, 840566081, 11834555867, 176621056393, 2838064404989, 48060623405313
OFFSET
0,5
COMMENTS
A non-normal magic square is a square matrix with row sums, column sums, and both diagonals all equal to d, for some d|n.
FORMULA
a(p) = A007016(p) + 1 if p is prime. a(n) >= A007016(n) + 1 for n > 1. - Chai Wah Wu, Jan 15 2019
EXAMPLE
The a(4) = 10 magic squares:
[4]
.
[1 1]
[1 1]
.
[1 0 0 0][1 0 0 0][0 1 0 0][0 1 0 0][0 0 1 0][0 0 1 0][0 0 0 1][0 0 0 1]
[0 0 1 0][0 0 0 1][0 0 1 0][0 0 0 1][1 0 0 0][0 1 0 0][1 0 0 0][0 1 0 0]
[0 0 0 1][0 1 0 0][1 0 0 0][0 0 1 0][0 1 0 0][0 0 0 1][0 0 1 0][1 0 0 0]
[0 1 0 0][0 0 1 0][0 0 0 1][1 0 0 0][0 0 0 1][1 0 0 0][0 1 0 0][0 0 1 0]
MATHEMATICA
prs2mat[prs_]:=Table[Count[prs, {i, j}], {i, Union[First/@prs]}, {j, Union[Last/@prs]}];
multsubs[set_, k_]:=If[k==0, {{}}, Join@@Table[Prepend[#, set[[i]]]&/@multsubs[Drop[set, i-1], k-1], {i, Length[set]}]];
Table[Length[Select[multsubs[Tuples[Range[n], 2], n], And[Union[First/@#]==Range[Max@@First/@#]==Union[Last/@#], SameQ@@Join[{Tr[prs2mat[#]], Tr[Reverse[prs2mat[#]]]}, Total/@prs2mat[#], Total/@Transpose[prs2mat[#]]]]&]], {n, 5}]
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Nov 18 2018
EXTENSIONS
a(7)-a(15) from Chai Wah Wu, Jan 15 2019
a(16)-a(17) from Chai Wah Wu, Jan 16 2019
STATUS
approved