OFFSET
0,5
COMMENTS
A non-normal magic square is a square matrix with row sums, column sums, and both diagonals all equal to d, for some d|n.
LINKS
FORMULA
EXAMPLE
The a(4) = 10 magic squares:
[4]
.
[1 1]
[1 1]
.
[1 0 0 0][1 0 0 0][0 1 0 0][0 1 0 0][0 0 1 0][0 0 1 0][0 0 0 1][0 0 0 1]
[0 0 1 0][0 0 0 1][0 0 1 0][0 0 0 1][1 0 0 0][0 1 0 0][1 0 0 0][0 1 0 0]
[0 0 0 1][0 1 0 0][1 0 0 0][0 0 1 0][0 1 0 0][0 0 0 1][0 0 1 0][1 0 0 0]
[0 1 0 0][0 0 1 0][0 0 0 1][1 0 0 0][0 0 0 1][1 0 0 0][0 1 0 0][0 0 1 0]
MATHEMATICA
prs2mat[prs_]:=Table[Count[prs, {i, j}], {i, Union[First/@prs]}, {j, Union[Last/@prs]}];
multsubs[set_, k_]:=If[k==0, {{}}, Join@@Table[Prepend[#, set[[i]]]&/@multsubs[Drop[set, i-1], k-1], {i, Length[set]}]];
Table[Length[Select[multsubs[Tuples[Range[n], 2], n], And[Union[First/@#]==Range[Max@@First/@#]==Union[Last/@#], SameQ@@Join[{Tr[prs2mat[#]], Tr[Reverse[prs2mat[#]]]}, Total/@prs2mat[#], Total/@Transpose[prs2mat[#]]]]&]], {n, 5}]
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Nov 18 2018
EXTENSIONS
a(7)-a(15) from Chai Wah Wu, Jan 15 2019
a(16)-a(17) from Chai Wah Wu, Jan 16 2019
STATUS
approved