login
A321718
Number of coupled non-normal semi-magic rectangles with sum of entries equal to n.
13
1, 1, 5, 9, 44, 123, 986, 5043, 45832, 366300, 3862429, 39916803, 495023832, 6227020803, 88549595295, 1308012377572, 21086922542349, 355687428096003, 6427700493998229, 121645100408832003
OFFSET
0,3
COMMENTS
A coupled non-normal semi-magic rectangle is a nonnegative integer matrix with equal row sums and equal column sums. The common row sum may be different from the common column sum.
Rectangles must be of size k X m where k and m are divisors of n. This implies that a(p) = p! + 3 for p prime since the only allowable rectangles are of sizes 1 X 1, 1 X p, p X 1 and p X p. The 1 X 1 square is [p], the 1 X p and p X 1 rectangles are [1,...,1] and its transpose and the p X p squares are necessarily permutation matrices and there are p! permutation matrices of size p X p. Also, a(n) >= n! + 3 for n > 1. - Chai Wah Wu, Jan 15 2019
FORMULA
a(p) = p! + 3 for p prime. a(n) >= n! + 3 for n > 1. - Chai Wah Wu, Jan 15 2019
EXAMPLE
The a(3) = 9 coupled semi-magic rectangles:
[3] [1 1 1]
.
[1] [1 0 0] [1 0 0] [0 1 0] [0 1 0] [0 0 1] [0 0 1]
[1] [0 1 0] [0 0 1] [1 0 0] [0 0 1] [1 0 0] [0 1 0]
[1] [0 0 1] [0 1 0] [0 0 1] [1 0 0] [0 1 0] [1 0 0]
MATHEMATICA
prs2mat[prs_]:=Table[Count[prs, {i, j}], {i, Union[First/@prs]}, {j, Union[Last/@prs]}];
multsubs[set_, k_]:=If[k==0, {{}}, Join@@Table[Prepend[#, set[[i]]]&/@multsubs[Drop[set, i-1], k-1], {i, Length[set]}]];
Table[Length[Select[multsubs[Tuples[Range[n], 2], n], And[Union[First/@#]==Range[Max@@First/@#], Union[Last/@#]==Range[Max@@Last/@#], SameQ@@Total/@prs2mat[#], SameQ@@Total/@Transpose[prs2mat[#]]]&]], {n, 5}]
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Nov 18 2018
EXTENSIONS
a(7)-a(15) from Chai Wah Wu, Jan 15 2019
a(16)-a(19) from Chai Wah Wu, Jan 16 2019
STATUS
approved