OFFSET
0,4
COMMENTS
In general, let {X,Y,Z} be the roots of the cubic equation x^3 + ax^2 + xt + c = 0 where {a, b, c} are integers.
Let {u, v, w} be three numbers such that {u + v + w, u*X + v*Y + w*Z, u*X^2 + v*Y^2 + w*Z^2} are integers.
Then {p(n) = u*X^n + v*Y^n + w*Z^n | n = 0, 1, 2, ...} is an integer sequence with the recurrence relation: p(n) = -a*p(n-1) - b*p(n-2) - c*p(n-3).
Let k = Pi/7.
Let X = (sin(4k)*sin(8k))/(sin(2k)*sin(2k)),
Y = (sin(8k)*sin(2k))/(sin(4k)*sin(4k)),
Z = (sin(2k)*sin(4k))/(sin(8k)*sin(8k)).
Then {X,Y,Z} are the roots of the cubic equation x^3 - 3*x^2 - 4*x - 1 = 0.
This sequence: (a, b, c) = (3, 4, 1), (u, v, w) = (1/(sqrt(7)*tan(8k)), 1/(sqrt(7)*tan(2k)), 1/(sqrt(7)*tan(4k))).
A122600: (a, b, c) = (3, 4, 1), (u, v, w) = (1/(sqrt(7)*tan(2k)), 1/(sqrt(7)*tan(4k)), 1/(sqrt(7)*tan(8k))).
A321703: (a, b, c) = (3, 4, 1), (u, v, w) = (1/(sqrt(7)*tan(4k)), 1/(sqrt(7)*tan(8k)), 1/(sqrt(7)*tan(2k))).
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (3,4,1).
FORMULA
G.f.: (1 - 4*x - 2*x^2) / (1 - 3*x - 4*x^2 - x^3). - Colin Barker, Jan 15 2019
PROG
(PARI) Vec((1 - 4*x - 2*x^2) / (1 - 3*x - 4*x^2 - x^3) + O(x^30)) \\ Colin Barker, Jan 15 2019
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Kai Wang, Jan 14 2019
STATUS
approved