login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A321698 MM-numbers of uniform regular multiset multisystems. Numbers whose prime indices all have the same number of prime factors counted with multiplicity, and such that the product of the same prime indices is a power of a squarefree number. 3
1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 19, 23, 25, 27, 29, 31, 32, 33, 41, 43, 47, 49, 51, 53, 55, 59, 64, 67, 73, 79, 81, 83, 85, 93, 97, 101, 103, 109, 113, 121, 123, 125, 127, 128, 131, 137, 139, 149, 151, 155, 157, 161, 163, 165, 167, 169, 177, 179 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

A multiset multisystem is a finite multiset of finite multisets. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.

A multiset multisystem is uniform if all parts have the same size, and regular if all vertices appear the same number of times. For example, {{1,1},{2,3},{2,3}} is uniform and regular, so its MM-number 15463 belongs to the sequence.

LINKS

Table of n, a(n) for n=1..61.

EXAMPLE

The sequence of all uniform regular multiset multisystems, together with their MM-numbers, begins:

   1: {}                   33: {{1},{3}}            109: {{10}}

   2: {{}}                 41: {{6}}                113: {{1,2,3}}

   3: {{1}}                43: {{1,4}}              121: {{3},{3}}

   4: {{},{}}              47: {{2,3}}              123: {{1},{6}}

   5: {{2}}                49: {{1,1},{1,1}}        125: {{2},{2},{2}}

   7: {{1,1}}              51: {{1},{4}}            127: {{11}}

   8: {{},{},{}}           53: {{1,1,1,1}}          128: {{},{},{},{},{},{}}

   9: {{1},{1}}            55: {{2},{3}}            131: {{1,1,1,1,1}}

  11: {{3}}                59: {{7}}                137: {{2,5}}

  13: {{1,2}}              64: {{},{},{},{},{},{}}  139: {{1,7}}

  15: {{1},{2}}            67: {{8}}                149: {{3,4}}

  16: {{},{},{},{}}        73: {{2,4}}              151: {{1,1,2,2}}

  17: {{4}}                79: {{1,5}}              155: {{2},{5}}

  19: {{1,1,1}}            81: {{1},{1},{1},{1}}    157: {{12}}

  23: {{2,2}}              83: {{9}}                161: {{1,1},{2,2}}

  25: {{2},{2}}            85: {{2},{4}}            163: {{1,8}}

  27: {{1},{1},{1}}        93: {{1},{5}}            165: {{1},{2},{3}}

  29: {{1,3}}              97: {{3,3}}              167: {{2,6}}

  31: {{5}}               101: {{1,6}}              169: {{1,2},{1,2}}

  32: {{},{},{},{},{}}    103: {{2,2,2}}            177: {{1},{7}}

MATHEMATICA

primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];

Select[Range[100], And[SameQ@@PrimeOmega/@primeMS[#], SameQ@@Last/@FactorInteger[Times@@primeMS[#]]]&]

CROSSREFS

Cf. A005176, A007016, A112798, A271103, A283877, A299353, A302242, A306017, A319056, A319189, A320324, A321699, A321717, A322554, A322703, A322833.

Sequence in context: A316476 A056867 A320324 * A062491 A087092 A046684

Adjacent sequences:  A321695 A321696 A321697 * A321699 A321700 A321701

KEYWORD

nonn

AUTHOR

Gus Wiseman, Dec 27 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 24 00:12 EDT 2019. Contains 321444 sequences. (Running on oeis4.)