login
A321677
Number of non-isomorphic set multipartitions (multisets of sets) of weight n with no singletons.
2
1, 0, 1, 1, 4, 4, 16, 22, 70, 132, 375, 848, 2428, 6256, 18333, 52560, 161436, 500887, 1624969, 5384625, 18438815, 64674095, 233062429, 859831186, 3248411250, 12545820860, 49508089411, 199410275018, 819269777688, 3430680180687, 14633035575435, 63535672197070
OFFSET
0,5
COMMENTS
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
LINKS
EXAMPLE
Non-isomorphic representatives of the a(2) = 1 through a(6) = 16 set multipartitions:
{{1,2}} {{1,2,3}} {{1,2,3,4}} {{1,2,3,4,5}} {{1,2,3,4,5,6}}
{{1,2},{1,2}} {{1,2},{3,4,5}} {{1,2,3},{1,2,3}}
{{1,2},{3,4}} {{1,4},{2,3,4}} {{1,2},{3,4,5,6}}
{{1,3},{2,3}} {{2,3},{1,2,3}} {{1,2,3},{4,5,6}}
{{1,2,5},{3,4,5}}
{{1,3,4},{2,3,4}}
{{1,5},{2,3,4,5}}
{{3,4},{1,2,3,4}}
{{1,2},{1,2},{1,2}}
{{1,2},{1,3},{2,3}}
{{1,2},{3,4},{3,4}}
{{1,2},{3,4},{5,6}}
{{1,2},{3,5},{4,5}}
{{1,3},{2,3},{2,3}}
{{1,3},{2,4},{3,4}}
{{1,4},{2,4},{3,4}}
PROG
(PARI)
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
K(q, t, k)={WeighT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k)) - Vec(sum(j=1, #q, if(t%q[j]==0, q[j])) + O(x*x^k), -k)}
a(n)={if(n==0, 1, my(s=0); forpart(q=n, my(g=sum(t=1, n, subst(x*Ser(K(q, t, n\t)/t), x, x^t) )); s+=permcount(q)*polcoef(exp(g), n)); s/n!)} \\ Andrew Howroyd, Jan 16 2024
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 16 2018
EXTENSIONS
Terms a(11) and beyond from Andrew Howroyd, Sep 01 2019
STATUS
approved