OFFSET
1,4
COMMENTS
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
EXAMPLE
Triangle begins:
1
1 1
2
1 1 1
1 2
1 1 1 1
3
2 2
1 1 2
1 1 1 1 1
1 3
1 1 1 1 1 1
1 1 1 2
1 2 2
4
1 1 1 1 1 1 1
2 3
1 1 1 1 1 1 1 1
1 1 3
1 1 2 2
1 1 1 1 2
1 1 1 1 1 1 1 1 1
The sequence of reversed dual partitions begins: (), (1), (11), (2), (111), (12), (1111), (3), (22), (112), (11111), (13), (111111), (1112), (122), (4), (1111111), (23), (11111111), (113), (1122), (11112), (111111111), (14), (222), (111112), (33), (1113), (1111111111), (123).
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
conj[y_]:=If[Length[y]==0, y, Table[Length[Select[y, #>=k&]], {k, 1, Max[y]}]];
Table[Sort[conj[primeMS[n]]], {n, 50}]
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Gus Wiseman, Nov 15 2018
STATUS
approved