login
A321645
Number of distinct row/column permutations of plane partitions of n.
11
1, 1, 3, 11, 32, 96, 290, 864, 2502, 7134, 20081
OFFSET
0,3
EXAMPLE
The a(3) = 11 permutations of plane partitions:
[3] [2 1] [1 2] [1 1 1]
.
[2] [1 1] [1 1] [1] [1 0] [0 1]
[1] [1 0] [0 1] [2] [1 1] [1 1]
.
[1]
[1]
[1]
MATHEMATICA
submultisetQ[M_, N_]:=Or[Length[M]==0, MatchQ[{Sort[List@@M], Sort[List@@N]}, {{x_, Z___}, {___, x_, W___}}/; submultisetQ[{Z}, {W}]]];
multsubs[set_, k_]:=If[k==0, {{}}, Join@@Table[Prepend[#, set[[i]]]&/@multsubs[Drop[set, i-1], k-1], {i, Length[set]}]];
Table[Length[Select[multsubs[Tuples[Range[n], 2], n], And[Union[First/@#]==Range[Max@@First/@#], Union[Last/@#]==Range[Max@@Last/@#], OrderedQ[Sort[Map[Last, GatherBy[Sort[Reverse/@#], First], {2}], submultisetQ], submultisetQ], OrderedQ[Sort[Sort/@Map[Last, GatherBy[#, First], {2}], submultisetQ], submultisetQ]]&]], {n, 6}]
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Nov 15 2018
STATUS
approved