login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A321558 a(n) = Sum_{d divides n} (-1)^(d + n/d) * d^2. 4
1, -5, 10, -13, 26, -50, 50, -45, 91, -130, 122, -130, 170, -250, 260, -173, 290, -455, 362, -338, 500, -610, 530, -450, 651, -850, 820, -650, 842, -1300, 962, -685, 1220, -1450, 1300, -1183, 1370, -1810, 1700, -1170, 1682, -2500, 1850, -1586, 2366 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Seiichi Manyama, Table of n, a(n) for n = 1..10000 (terms 1..1000 from G. C. Greubel)

P. Bala, A signed Dirichlet product of arithmetical functions

J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8).

Index entries for sequences mentioned by Glaisher

FORMULA

G.f.: Sum_{k>=1} (-1)^(k+1)*k^2*x^k/(1 + x^k). - Ilya Gutkovskiy, Nov 27 2018

MATHEMATICA

a[n_] := DivisorSum[n, (-1)^(# + n/#)*#^2 &]; Array[a, 50] (* Amiram Eldar, Nov 27 2018 *)

PROG

(PARI) apply( A321558(n)=sumdiv(n, d, (-1)^(n\d-d)*d^2), [1..30]) \\ M. F. Hasler, Nov 26 2018

(MAGMA) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&+[(-1)^(k+1)*k^2*x^k/(1 + x^k) : k in [1..2*m]]) )); // G. C. Greubel, Nov 28 2018

(Sage) s=(sum((-1)^(k+1)*k^2*x^k/(1 + x^k)  for k in (1..50))).series(x, 30); a = s.coefficients(x, sparse=False); a[1:] # G. C. Greubel, Nov 28 2018

CROSSREFS

Column k=2 of A322083.

Glaisher's xi_i (i=0..12): A228441, A109506, A321558, A321559, A321560, A321561, A321562, A321563, A321564, A321565, A321807, A321808, A321809

Cf. A321543 - A321557, A321810 - A321836 for similar sequences.

Sequence in context: A272267 A195735 A061145 * A317966 A119139 A313451

Adjacent sequences:  A321555 A321556 A321557 * A321559 A321560 A321561

KEYWORD

sign,mult,look

AUTHOR

N. J. A. Sloane, Nov 23 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 08:47 EDT 2019. Contains 328292 sequences. (Running on oeis4.)