OFFSET
0,2
COMMENTS
LINKS
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
K. S. Williams, Fourier series of a class of eta quotients, Int. J. Number Theory 8 (2012), no. 4, 993-1004.
FORMULA
Expansion of phi(-x) * phi(-x^2)^3 / (phi(-x^3) * phi(-x^6)) in powers of x where phi() is a Ramanujan theta function.
Expansion of eta(q)^6 * eta(q^2)^3 * eta(q^12) / (eta(q^3)^2 * eta(q^4)^3 * eta(q^6)) in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 864 (t / i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A321527.
a(n) = -6 * (s(n/1) - 4*s(n/2) - 9*s(n/3) + 16*s(n/4)) if n>0, where s(x) = sum of divisors of x for integer x else 0.
EXAMPLE
G.f. = 1 - 6*x + 6*x^2 + 30*x^3 - 66*x^4 - 36*x^5 + 186*x^6 - 48*x^7 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 4, 0, x] EllipticTheta[ 4, 0, x^2])^3 / ( EllipticTheta[ 4, 0, x^3] EllipticTheta[ 4, 0, x^6]), {x, 0, n}];
a[ n_] := With[ {s = If[ FractionalPart @ # > 0, 0, DivisorSigma[1, #]] &}, If[ n < 1, Boole[n==0], -6 (s[n/1] - 4 s[n/2] - 9 s[n/3] + 16 s[n/4])]];
a[ n_] := If[ n < 1, Boole[n==0], -6 Sum[ d {1, -1, -2, 3, 1, -4, 1, 3, -2, -1, 1, 0}[[Mod[d, 12, 1]]], {d, Divisors[n]}]];
PROG
(PARI) {a(n) = if( n<1, n==0, -6 * sumdiv( n, d, d * [0, 1, -1, -2, 3, 1, -4, 1, 3, -2, -1, 1][d%12 + 1]))};
(PARI) {a(n) = my(s = x -> if(frac(x), 0, sigma(x))); if( n<1, n==0, -6 * (s(n/1) - 4*s(n/2) - 9*s(n/3) + 16*s(n/4)))};
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^6 * eta(x^2 + A)^3 * eta(x^12 + A) / (eta(x^3 + A)^2 * eta(x^4 + A)^3 * eta(x^6 + A)), n))};
(Magma) A := Basis( ModularForms( Gamma0(12), 2), 49); A[1] - 6*A[2] + 6*A[3] + 30*A[4] - 66*A[5];
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Nov 12 2018
STATUS
approved