The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A321475 Zeroless factorials (version 2): a(0) = 1, and for any n > 0, a(n) = noz(1 * noz(2 * ... * noz((n-1) * n))), where noz(n) = A004719(n) omits the zeros from n. 1
 1, 1, 2, 6, 24, 12, 72, 54, 432, 3888, 3888, 399168, 576, 82728, 879912, 2397168, 337968, 5924736, 8851949568, 143936352, 31644, 92589264, 118459638, 3698784, 1197539136, 2387625984, 954864, 236271168, 3573339984, 238453776, 69587928, 142275168, 33566976 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS This sequence is a variant of A243657 where the multiplications are carried in the opposite order; as (i, j) -> noz(i * j) is not associative in general we obtain another sequence. Is this sequence bounded? LINKS Rémy Sigrist, Table of n, a(n) for n = 0..10000 FORMULA a(10^k) = a(10^k - 1) for any k >= 0. EXAMPLE For n = 12: - noz(11 * 12) = noz(132) = 132, - noz(10 * 132) = noz(1320) = 132, - noz(9 * 132) = noz(1188) = 1188, - noz(8 * 1188) = noz(9504) = 954, - noz(7 * 954) = noz(6678) = 6678, - noz(6 * 6678) = noz(40068) = 468, - noz(5 * 468) = noz(2340) = 234, - noz(4 * 234) = noz(936) = 936, - noz(3 * 936) = noz(2808) = 288, - noz(2 * 288) = noz(576) = 576, - noz(1 * 576) = noz(576) = 576, - hence a(12) = 576. PROG (PARI) a(n, base=10) = my (f=max(1, n)); forstep (k=n-1, 2, -1, f = fromdigits(select(sign, digits(f*k, base)), base)); f CROSSREFS Cf. A000142, A004719, A243657. Sequence in context: A181952 A256270 A243657 * A004154 A076126 A263692 Adjacent sequences:  A321472 A321473 A321474 * A321476 A321477 A321478 KEYWORD nonn,base AUTHOR Rémy Sigrist, Nov 11 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 13 06:22 EDT 2020. Contains 336442 sequences. (Running on oeis4.)