login
A321463
Decimal expansion of 36*Pi.
0
1, 1, 3, 0, 9, 7, 3, 3, 5, 5, 2, 9, 2, 3, 2, 5, 5, 6, 5, 8, 4, 6, 5, 5, 1, 6, 1, 7, 9, 8, 0, 6, 2, 1, 0, 3, 8, 3, 1, 0, 9, 8, 0, 9, 8, 3, 7, 7, 5, 0, 3, 8, 0, 9, 5, 5, 5, 0, 9, 8, 0, 0, 5, 3, 2, 3, 0, 8, 1, 3, 9, 0, 6, 2, 6, 3, 0, 3, 5, 2, 3, 9, 5, 0, 6, 0, 9
OFFSET
3,3
COMMENTS
Surface area and volume of a sphere of radius 3, the unique non-degenerate sphere with volume equal to surface area.
Let r be the radius of the sphere. Set (4/3)*Pi*r^3 = 4*Pi*r^2, then (4/3)*Pi*r = 4*Pi and r = 3. Thus, the volume V(3) = (4/3)*Pi*3^3 = 36*Pi and the surface area A(3) = 4*Pi*3^2 = 36*Pi.
In other words: 36*Pi is also the surface area of a sphere whose diameter equals the square root of 36. More generally x*Pi is also the surface area of a sphere whose diameter equals the square root of x. - Omar E. Pol, Nov 10 2018
FORMULA
Equals 36*A000796.
EXAMPLE
113.097335529232556584655161798062103831098098377503809555098005323081390626....
MATHEMATICA
First[RealDigits[N[36*Pi, 100], 10]] (* Stefano Spezia, Nov 10 2018 *)
PROG
(PARI) 36*Pi
CROSSREFS
Cf. A000796.
Cf. A019694 (surface area of sphere of radius 1), A019699 (volume of sphere of radius 1).
Sequence in context: A291252 A199402 A011083 * A197689 A201942 A181831
KEYWORD
nonn,cons
AUTHOR
Felix Fröhlich, Nov 10 2018
STATUS
approved