OFFSET
1,2
COMMENTS
Also Heinz numbers of integer partitions that cannot be partitioned into two or more blocks with equal sums. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
EXAMPLE
The sequence of all integer partitions that cannot be partitioned into two or more blocks with equal sums begins: (1), (2), (3), (21), (4), (31), (5), (6), (41), (32), (7), (221), (8), (311), (42), (51), (9), (2111), (61), (411).
MATHEMATICA
hwt[n_]:=Total[Cases[FactorInteger[n], {p_, k_}:>PrimePi[p]*k]];
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Select[Range[100], Select[facs[#], And[Length[#]>1, SameQ@@hwt/@#]&]=={}&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 10 2018
STATUS
approved