This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A321396 Square array read by ascending antidiagonals, A(n, k) for n >= 0 and k >= 0, related to a class of Motzkin trees. 4
 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 0, 0, 1, 0, 1, 1, 3, 2, 5, 0, 1, 0, 1, 1, 3, 2, 7, 0, 0, 1, 0, 1, 1, 3, 3, 9, 5, 14, 0, 1, 0, 1, 1, 3, 3, 9, 7, 20, 0, 0, 1, 0, 1, 1, 3, 3, 10, 9, 27, 19, 42 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,21 COMMENTS The recursively specified combinatorial structure related to the array is the set of Motzkin trees where all leaves are at the same unary height (see section 3.2 in O. Bodini et al.). LINKS Olivier Bodini, Danièle Gardy, Bernhard Gittenberger, Zbigniew Gołębiewski, On the number of unary-binary tree-like structures with restrictions on the unary height, arXiv:1510.01167v1 [math.CO], 2015. FORMULA Define a sequence of generating functions recursively gf(-1) = 1 and for n >= 0 gf(n) = (1 - sqrt(1 - 4*z^2*gf(n-1)))/(2*z). Row n of the array has the generating function gf(n)/z^n. For fixed k column k differs only for finitely many indices from the limit value A321397(k). EXAMPLE Array begins:     [0]  0, 1, 0, 1, 0, 2, 0,  5,  0, 14,  0,  42,   0, 132, ...  A126120     [1]  0, 1, 0, 1, 1, 2, 2,  7,  5, 20, 19,  60,  62, 202, ...  A300126     [2]  0, 1, 0, 1, 1, 3, 2,  9,  7, 27, 25,  85,  86, 287, ...  A321572     [3]  0, 1, 0, 1, 1, 3, 3,  9,  9, 29, 32,  93, 111, 317, ...     [4]  0, 1, 0, 1, 1, 3, 3, 10,  9, 31, 34, 100, 119, 344, ...     [5]  0, 1, 0, 1, 1, 3, 3, 10, 10, 31, 36, 102, 126, 352, ...     [6]  0, 1, 0, 1, 1, 3, 3, 10, 10, 32, 36, 104, 128, 359, ...     [7]  0, 1, 0, 1, 1, 3, 3, 10, 10, 32, 37, 104, 130, 361, ...     [8]  0, 1, 0, 1, 1, 3, 3, 10, 10, 32, 37, 105, 130, 363, ...     [9]  0, 1, 0, 1, 1, 3, 3, 10, 10, 32, 37, 105, 131, 363, ... Array read by ascending diagonals:     [0]  0     [1]  0, 1     [2]  0, 1, 0     [3]  0, 1, 0, 1     [4]  0, 1, 0, 1, 0     [5]  0, 1, 0, 1, 1, 2     [6]  0, 1, 0, 1, 1, 2, 0     [7]  0, 1, 0, 1, 1, 3, 2, 5     [8]  0, 1, 0, 1, 1, 3, 2, 7, 0     [9]  0, 1, 0, 1, 1, 3, 3, 9, 5, 14 MAPLE Arow := proc(n, len) local rowgf, ser; rowgf := proc(n) option remember; `if`(n = 0, (1-sqrt(1-4*z^2))/(2*z), expand((1 - sqrt(1 - 4*z^2*rowgf(n-1)))/(2*z))) end: ser := series(rowgf(n)/z^n, z, 2*(2+max(len, n))); seq(coeff(ser, z, k), k=0..len) end: seq(Arow(n, 13), n=0..9); MATHEMATICA nmax = 11; gf[-1] = 1; gf[n_] := gf[n] = (1-Sqrt[1 - 4z^2 gf[n-1]])/(2z); row[n_] := row[n] = gf[n]/z^n + O[z]^(nmax+1) // CoefficientList[#, z]&; A[n_, k_] := row[n][[k + 1]]; Table[A[n - k, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 08 2018 *) CROSSREFS Cf. A321395 (antidiagonal sums), A321397 (limit). Cf. A000108 (Catalan), A001006 (Motzkin), A126120 (binary Catalan trees, row 0), A300126 (row 1), A321572 (row 2). Sequence in context: A230000 A016242 A216659 * A141747 A239706 A260736 Adjacent sequences:  A321393 A321394 A321395 * A321397 A321398 A321399 KEYWORD nonn,tabl AUTHOR Peter Luschny, Nov 11 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 16 06:46 EDT 2019. Contains 324145 sequences. (Running on oeis4.)