login
A321388
Expansion of Product_{k>=1} (1 + x^k)^(k^(k-2)).
2
1, 1, 1, 4, 19, 144, 1443, 18295, 280918, 5069651, 105147307, 2464296222, 64402891501, 1856989724951, 58560557062508, 2004999890781363, 74069439021212783, 2936703201134924845, 124383305232306494864, 5605027085651919547476, 267759074907470856179460, 13516676464234372267564939
OFFSET
0,4
COMMENTS
Weigh transform of A000272.
LINKS
FORMULA
G.f.: exp(Sum_{k>=1} ( Sum_{d|k} (-1)^(k/d+1)*d^(d-1) ) * x^k/k).
a(n) ~ n^(n-2) * (1 + exp(-1)/n + (5*exp(-1)/2 + exp(-2))/n^2). - Vaclav Kotesovec, Nov 09 2018
MAPLE
a:=series(mul((1+x^k)^(k^(k-2)), k=1..100), x=0, 22): seq(coeff(a, x, n), n=0..21); # Paolo P. Lava, Apr 02 2019
MATHEMATICA
nmax = 21; CoefficientList[Series[Product[(1 + x^k)^(k^(k - 2)), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^(d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 21}]
PROG
(PARI) m=30; x='x+O('x^m); Vec(prod(k=1, m, (1+x^k)^(k^(k-2)))) \\ G. C. Greubel, Nov 09 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1 + x^k)^(k^(k-2)): k in [1..m]]) )); // G. C. Greubel, Nov 09 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 08 2018
STATUS
approved