This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A321387 Expansion of Product_{k>=1} (1 + x^k)^(k^(k-1)). 3
 1, 1, 2, 11, 74, 708, 8583, 127424, 2239965, 45514345, 1049365071, 27061132159, 771695223819, 24109698083919, 818914886275467, 30044684789498522, 1184048086192376822, 49883929845112421452, 2237287911899357657492, 106426388125032988691636, 5352033610656721914626572 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Weigh transform of A000169. LINKS N. J. A. Sloane, Transforms FORMULA G.f.: exp(Sum_{k>=1} ( Sum_{d|k} (-1)^(k/d+1)*d^d ) * x^k/k). a(n) ~ n^(n-1) * (1 + exp(-1)/n + (3*exp(-1)/2 + 2*exp(-2))/n^2). - Vaclav Kotesovec, Nov 09 2018 MAPLE a:=series(mul((1+x^k)^(k^(k-1)), k=1..100), x=0, 21): seq(coeff(a, x, n), n=0..20); # Paolo P. Lava, Apr 02 2019 MATHEMATICA nmax = 20; CoefficientList[Series[Product[(1 + x^k)^(k^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x] a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^d, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 20}] PROG (PARI) seq(n)={Vec(exp(sum(k=1, n, sumdiv(k, d, (-1)^(k/d+1)*d^d ) * x^k/k) + O(x*x^n)))} \\ Andrew Howroyd, Nov 09 2018 (PARI) m=30; x='x+O('x^m); Vec(prod(k=1, m, (1+x^k)^(k^(k-1)))) \\ G. C. Greubel, Nov 09 2018 (MAGMA) m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1+x^k)^(k^(k-1)): k in [1..m]]) )); // G. C. Greubel, Nov 09 2018 CROSSREFS Cf. A000169, A023879, A261053, A283335, A321385, A321388. Sequence in context: A212028 A324445 A158265 * A309146 A198088 A112894 Adjacent sequences:  A321384 A321385 A321386 * A321388 A321389 A321390 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Nov 08 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 08:53 EST 2019. Contains 329788 sequences. (Running on oeis4.)