login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A321387 Expansion of Product_{k>=1} (1 + x^k)^(k^(k-1)). 3
1, 1, 2, 11, 74, 708, 8583, 127424, 2239965, 45514345, 1049365071, 27061132159, 771695223819, 24109698083919, 818914886275467, 30044684789498522, 1184048086192376822, 49883929845112421452, 2237287911899357657492, 106426388125032988691636, 5352033610656721914626572 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Weigh transform of A000169.

LINKS

Table of n, a(n) for n=0..20.

N. J. A. Sloane, Transforms

FORMULA

G.f.: exp(Sum_{k>=1} ( Sum_{d|k} (-1)^(k/d+1)*d^d ) * x^k/k).

a(n) ~ n^(n-1) * (1 + exp(-1)/n + (3*exp(-1)/2 + 2*exp(-2))/n^2). - Vaclav Kotesovec, Nov 09 2018

MAPLE

a:=series(mul((1+x^k)^(k^(k-1)), k=1..100), x=0, 21): seq(coeff(a, x, n), n=0..20); # Paolo P. Lava, Apr 02 2019

MATHEMATICA

nmax = 20; CoefficientList[Series[Product[(1 + x^k)^(k^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]

a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^d, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 20}]

PROG

(PARI) seq(n)={Vec(exp(sum(k=1, n, sumdiv(k, d, (-1)^(k/d+1)*d^d ) * x^k/k) + O(x*x^n)))} \\ Andrew Howroyd, Nov 09 2018

(PARI) m=30; x='x+O('x^m); Vec(prod(k=1, m, (1+x^k)^(k^(k-1)))) \\ G. C. Greubel, Nov 09 2018

(MAGMA) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1+x^k)^(k^(k-1)): k in [1..m]]) )); // G. C. Greubel, Nov 09 2018

CROSSREFS

Cf. A000169, A023879, A261053, A283335, A321385, A321388.

Sequence in context: A212028 A324445 A158265 * A309146 A198088 A112894

Adjacent sequences:  A321384 A321385 A321386 * A321388 A321389 A321390

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Nov 08 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 08:53 EST 2019. Contains 329788 sequences. (Running on oeis4.)