login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A321343 Primes p such that if k is the sum of the first p primes then the sum of the first k primes is prime. 3
19, 73, 103, 157, 277, 313, 317, 421, 443, 523, 571, 607, 701, 823, 853, 907, 911, 977, 1051, 1087, 1117, 1181, 1187, 1223, 1451, 1453, 1531, 1667, 1861, 2551, 2999, 3169, 3257, 3389, 3583, 3671, 3889, 3907, 3911, 4597, 4691, 4919, 5347, 5527, 5569, 5623, 5657, 5839 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Primes p such that A007504(A007504(p)) is prime; subsequence of A321342.

LINKS

Ray Chandler, Table of n, a(n) for n = 1..2500

EXAMPLE

The smallest prime p such that A007504(p) is prime is 19 (sum of first 19 primes is 100 and sum of first 100 primes is 24133, which is prime). Therefore a(1) = 19.

MAPLE

N:=2000:

for n from 1 to N by 2 do

X:=add(ithprime(k), k=1..n);

Y:=add(ithprime(j), j=1..X);

if isprime(n)and isprime(Y) then print(n);

end if:

end do:

MATHEMATICA

primeSum[n_] := Sum[Prime[i], {i, n}]; Select[Range[300], PrimeQ[#] && PrimeQ[primeSum[primeSum[#]]] &] (* Amiram Eldar, Nov 07 2018 *)

PROG

(PARI) upto(n) = {my(v = vector(n+1), res = List, t = 1, setv, s = 0, Ap = 0, AAp=0, q =0); v[1] = 2; forprime(p = 3, prime(n+1), t++; v[t] = v[t-1] + p); t=1; vt = v[1]; forprime(p = 2, , AAp += p; q++; if(q == vt, if(isprime(t) && isprime(AAp), listput(res, t); print1(t", ")); t++; if(t>=n, return(res)); vt = v[t])); res} \\ David A. Corneth, Nov 09 2018

(Perl)

use ntheory qw(:all);

for (my ($i, $k) = (1, 1); ; ++$k) {

    my $p = nth_prime($k);

    if (is_prime sum_primes nth_prime sum_primes nth_prime $p) {

        print "a($i) = $p\n"; ++$i;

    }

} # Daniel Suteu, Nov 11 2018

CROSSREFS

Cf. A007504, A013916, A321439, A321342.

Sequence in context: A142516 A127874 A289817 * A255889 A154406 A141960

Adjacent sequences:  A321340 A321341 A321342 * A321344 A321345 A321346

KEYWORD

nonn

AUTHOR

David James Sycamore, Nov 06 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 15 09:05 EST 2019. Contains 329995 sequences. (Running on oeis4.)