login
A321277
One half of the sum over all permutations of [n] of the absolute difference between the length of the longest increasing subsequence and the length of the longest decreasing subsequence.
7
0, 1, 2, 12, 61, 367, 2805, 23372, 213317, 2189823, 24882811, 305633678, 4037554628, 57447084699, 877263905683, 14276260437624, 246201450585329, 4487236144246511, 86286209907252739, 1746559569805617910, 37106502447954647906, 825196425771658993531
OFFSET
1,3
FORMULA
a(n) = (1/2) * Sum_{k=1-n..n-1} abs(k) * A321316(n,k).
MAPLE
h:= l-> (n-> add(i, i=l)!/mul(mul(1+l[i]-j+add(`if`(j>
l[k], 0, 1), k=i+1..n), j=1..l[i]), i=1..n))(nops(l)):
f:= l-> h(l)^2*abs(l[1]-nops(l))/2:
g:= (n, i, l)-> `if`(n=0 or i=1, f([l[], 1$n]),
g(n, i-1, l) +g(n-i, min(i, n-i), [l[], i])):
a:= n-> g(n$2, []):
seq(a(n), n=1..23);
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 01 2018
STATUS
approved