%I
%S 1,0,1,1,1,3,4,10,20,42,98,210,492,1122,2607,6149,14443,34463,
%T 82238,197574,476918,1154402,2807516,6845016,16743674,41067512,
%U 100967539,248843095,614546545,1520779665
%N a(n) gives the Asequence for the Riordan matrix (1/(1 + x^2  x^3), x/(1 + x^2  x^3)) from A321196.
%C See the recurrence formula for A321196 from the A and Zsequences.
%F a(n) = [t^n] (1/f(t)), where f(t) = F^{[1]}(t)/t, with the compositional inverse F^{[1]}(t) of F(x) = 1/(1 + x^2  x^3). The expansion of f is given by (1)^n*A001005(n), for n >= 0.
%Y Cf. A001005, A321196.
%K sign
%O 0,6
%A _Wolfdieter Lang_, Oct 30 2018
