login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A321196 Riordan triangle T = (1/(1 + x^2 - x^3), x/(1 + x^2 - x^3)). 3
1, 0, 1, -1, 0, 1, 1, -2, 0, 1, 1, 2, -3, 0, 1, -2, 3, 3, -4, 0, 1, 0, -6, 6, 4, -5, 0, 1, 3, -1, -12, 10, 5, -6, 0, 1, -2, 12, -4, -20, 15, 6, -7, 0, 1, -3, -7, 30, -10, -30, 21, 7, -8, 0, 1, 5, -16, -15, 60, -20, -42, 28, 8, -9, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,8

COMMENTS

This is the (ordinary) convolution triangle based on A077961 (the column k = 0 of T).

The row polynomials R(n, x) := Sum_{k=0..n} T(n, k)*x^k, with R(-1, x) = 0, appear in the Cayley-Hamilton formula for nonnegative powers of a 3 X 3 matrix with Det M = sigma(3; 3) = x1*x2*x3 = +1, sigma(3; 2) := x1*x2 + x1*x*3 + x2*x^3 = +1 and Tr M = sigma(3; 1) = x1 + x2 = x, where x1, x2, and x3 are the eigenvalues of M, and sigma the elementary symmetric functions, as M^n = R(n-2, x)*M^2 + (-R(n-3, x) + R(n-4, x))*M + R(n-3, x)*1_3, for n >= 3, where M^0 = 1_3 is the 3 X 3 unit matrix.

For the Cayley-Hamilton formula for 3 X 3 matrices with Det M = +1, sigma(3,2) = -1 and Tr(M) = x see A104578.

The row sums give A133872 (repeat(1, 1, 0, 0)). The alternating row sums give A057597(n+2), for n >= 0.

The Riordan triangle (1/(1 + x^2 + x^3), x/(1 + x^2 + x^3)) has entries t(n, m) = (-1)^(n-m)*T(n, m) (from the g.f. G(-x, -z), where the g.f. G of T is given below).

The inverse of Riordan T is T^{-1}, given in A321198.

LINKS

Table of n, a(n) for n=0..65.

FORMULA

T(n, k) = T(n-1, k-1) - T(n-2, k) + T(n-3, k), T(0, 0) = 1, T(n,k) = 0 if n < k or if k < 0. (Cf. A104578.)

The Riordan property T = (G(x), x*G(x)) with G(x) = 1/(1 + x^2 - x^3) implies the following.

G.f. of row polynomials R(n, x) is G(x, z) = 1/(1 - x*z + z^2 - z^3).

G.f. of column sequence k: x^k/(1 + x^2 - x^3)^(k+1), k >= 0.

Boas-Buck recurrence (see the Aug 10 2017 remark in A046521, also for two references):

T(n, k) = ((k+1)/(n-k))*Sum_{j=k..n-1} B(n-1-j)*T(j, k), for n >= 1, k = 0,1, ..., n-1, and input T(n, n) = 1, for n >= 0. Here B(n) = [x^n]*(d/dx)log(G(x)) = x*(-2 + 3*x)/(1 + x^2 - x^3) = (-1)^n*A112455(n+1), for n >= 0.

Recurrences from the A- and Z- sequences (see the W. Lang link under A006232 with references), which are A(n) = A321197(n) and Z(n) = A(n+1).

  T(0, 0) = 1, T(n, k) = 0 for n < k, and

  T(n, 0) = Sum_{j=0..n-1} Z(j)*T(n-1, j), for n >= 1, and

  T(n, k) = Sum_{j=0..n-k} A(j)*T(n-1, k-1+j), for n >= m >= 1.

EXAMPLE

The triangle T(n, k) begins:

n\k  0   1   2   3   4   5  6  7  8  9 10 ...

---------------------------------------------

0:   1

1:   0   1

2:  -1   0   1

3:   1  -2   0   1

4:   1   2  -3   0   1

5:  -2   3   3  -4   0   1

6:   0  -6   6   4  -5   0  1

7:   3  -1 -12  10   5  -6  0  1

8:  -2  12  -4 -20  15   6 -7  0  1

9:  -3  -7  30 -10 -30  21  7 -8  0  1

10:  5 -16 -15  60 -20 -42 28  8 -9  0  1

...

Cayley-Hamilton formula for the matrix TS(x) =[[x,-1,1], [1,0,0], [0,1,0]] with Det(TS(x)) = +1, sigma(3, 2) = +1, and Tr(TS(x)) = x. For n = 3: TS(x)^3 = R(1, x)*TS(x)^2 + (-R(0, x) + R(-1, x))*TS(x) + R(0, x)*1_3 = x*TS(x)^2 - TS(x) + 1_3. Compare this for x = -1 with r^3 = R(3)*r^2 + (-R(2) + R(1))*r + R(2)*1 = r^2 - r + 1, where r = 1/t = A192918, with the tribonacci constant t = A058265, and R(n) = A057597(n) = R(n-2, -1).

Recurrence: T(5, 2) = T(4, 1) - T(3, 2) + T(2, 2) = 1 -(-1) + 1 = 3.

Boas-Buck type recurrence with B = {0, -2, 3, ...}:

  T(5, 2) = ((2+1)/(5-2))*(3*1 + (-2)*0 + 0*(-3)) = 1*3 = 3.

Z- and A-recurrence with A(n) = {1, 0, -1, 1, -1, ...} and Z(n) = A(n+1):

  T(4, 0) = 0*T(3, 0) - 1*T(3, 1) + 1*T(3, 2) - 1*T(3, 3) = 0 + 2 + 0 - 1 = 1.

  T(5, 2) = 1*T(4, 1) + 0*T(4, 2) - 1*T(4, 3) + 1*T(4, 4) = 2 + 0 + 0 + 1 = 3.

PROG

(Sage) # The function riordan_array is defined in A256893.

riordan_array(1/(1 + x^2 - x^3), x/(1 + x^2 - x^3), 11) # Peter Luschny, Nov 13 2018

CROSSREFS

Cf. A057597, A058265, A077961, A001005, A104578, A112455, A133872, A192918, A321197, A321198.

Sequence in context: A215075 A287417 A180177 * A104578 A316827 A286628

Adjacent sequences:  A321193 A321194 A321195 * A321197 A321198 A321199

KEYWORD

sign,easy,tabl

AUTHOR

Wolfdieter Lang, Nov 09 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 26 20:41 EDT 2019. Contains 321534 sequences. (Running on oeis4.)