login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A321140 a(n) = Sum_{d|n} sigma_3(d). 3
1, 10, 29, 83, 127, 290, 345, 668, 786, 1270, 1333, 2407, 2199, 3450, 3683, 5349, 4915, 7860, 6861, 10541, 10005, 13330, 12169, 19372, 15878, 21990, 21226, 28635, 24391, 36830, 29793, 42798, 38657, 49150, 43815, 65238, 50655, 68610, 63771, 84836, 68923, 100050, 79509, 110639, 99822 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Inverse Möbius transform applied twice to cubes.

LINKS

Seiichi Manyama, Table of n, a(n) for n = 1..10000

N. J. A. Sloane, Transforms

FORMULA

G.f.: Sum_{k>=1} sigma_3(k)*x^k/(1 - x^k).

a(n) = Sum_{d|n} d^3*tau(n/d).

From Jianing Song, Oct 28 2018: (Start)

Multiplicative with a(p^e) = (p^3*(p^(3e+3) - e - 2) + e + 1)/(p^3 - 1)^2.

Dirichlet g.f.: zeta(s)^2*zeta(s-3). (End)

Sum_{k=1..n} a(k) ~ Pi^8 * n^4 / 32400. - Vaclav Kotesovec, Nov 08 2018

MAPLE

with(numtheory): seq(coeff(series(add(sigma[3](k)*x^k/(1-x^k), k=1..n), x, n+1), x, n), n = 1 .. 45); # Muniru A Asiru, Oct 28 2018

MATHEMATICA

Table[Sum[DivisorSigma[3, d], {d, Divisors[n]}] , {n, 45}]

nmax = 45; Rest[CoefficientList[Series[Sum[DivisorSigma[3, k] x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]]

PROG

(PARI) a(n) = sumdiv(n, d, sigma(d, 3)); \\ Michel Marcus, Oct 28 2018

CROSSREFS

Cf. A001158, A007429, A007433, A027848.

Sequence in context: A048772 A055850 A200185 * A301571 A027979 A181102

Adjacent sequences:  A321137 A321138 A321139 * A321141 A321142 A321143

KEYWORD

nonn,mult

AUTHOR

Ilya Gutkovskiy, Oct 28 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 11 01:51 EDT 2020. Contains 335600 sequences. (Running on oeis4.)