OFFSET
1,2
COMMENTS
It is remarkable that this sequence should consist entirely of integers.
EXAMPLE
O.g.f.: A(x) = x + 3*x^2 + 120*x^3 + 14490*x^4 + 3472200*x^5 + 1368656352*x^6 + 799089568704*x^7 + 646368125624208*x^8 + 691455367099357920*x^9 + ...
The table of coefficients of x^k/k! in exp( n^2*(n+1)*x - n*(n+1)*A(x) ) begins:
n=1: [1, 0, -12, -1440, -695088, -833155200, -1970719243200, ...];
n=2: [1, 6, 0, -4752, -2192832, -2562534144, -6002370169344, ...];
n=3: [1, 24, 504, 0, -4904064, -5544412416, -12577520001024, ...];
n=4: [1, 60, 3480, 180000, 0, -10389600000, -23099972428800, ...];
n=5: [1, 120, 14220, 1641600, 171104400, 0, -39055052923200, ...];
n=6: [1, 210, 43848, 9072000, 1838313792, 339176678400, 0, ...];
n=7: [1, 336, 112560, 37554048, 12444582528, 4054169581056, 1209847750465536, 0, ...]; ...
in which the coefficients of x^n in row n form a diagonal of zeros.
PROG
(PARI) {a(n) = my(A=[1], m); for(i=1, n+1, m=#A; A=concat(A, 0); A[m+1] = Vec( exp(m^2*(m+1)*x +x*O(x^#A)) / Ser(A)^(m*(m+1)) )[m+1]/m/(m+1) ); polcoeff( log(Ser(A)), n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 06 2018
STATUS
approved