login
A321002
a(0)=3; thereafter a(n) = 20*6^(n-1)-2^(n-1).
2
3, 19, 118, 716, 4312, 25904, 155488, 933056, 5598592, 33592064, 201553408, 1209322496, 7255939072, 43535642624, 261213872128, 1567283265536, 9403699658752, 56422198083584, 338533188763648, 2031199133106176, 12187194799685632, 73123168800210944, 438739012805459968, 2632434076841148416
OFFSET
0,1
COMMENTS
Conjectured to be the sum of A175046(i) for 2^n <= i < 2^(n+1).
Conjecture is true (see comments in A175046). - Chai Wah Wu, Nov 18 2018
FORMULA
From Colin Barker, Nov 02 2018: (Start)
G.f.: (1 - x)*(3 - 2*x) / ((1 - 2*x)*(1 - 6*x)).
a(n) = 8*a(n-1) - 12*a(n-2) for n>2.
(End)
PROG
(PARI) Vec((1 - x)*(3 - 2*x) / ((1 - 2*x)*(1 - 6*x)) + O(x^25)) \\ Colin Barker, Nov 02 2018
(PARI) a(n) = if (n, 20*6^(n-1)-2^(n-1), 3); \\ Michel Marcus, Nov 02 2018
CROSSREFS
Essentially the first differences of A321003.
Cf. A175046.
Sequence in context: A005667 A098444 A290477 * A221184 A274852 A139176
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 01 2018
STATUS
approved