OFFSET
0,1
COMMENTS
Conjectured to be the sum of A175046(i) for 2^n <= i < 2^(n+1).
Conjecture is true (see comments in A175046). - Chai Wah Wu, Nov 18 2018
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (8,-12).
FORMULA
From Colin Barker, Nov 02 2018: (Start)
G.f.: (1 - x)*(3 - 2*x) / ((1 - 2*x)*(1 - 6*x)).
a(n) = 8*a(n-1) - 12*a(n-2) for n>2.
(End)
PROG
(PARI) Vec((1 - x)*(3 - 2*x) / ((1 - 2*x)*(1 - 6*x)) + O(x^25)) \\ Colin Barker, Nov 02 2018
(PARI) a(n) = if (n, 20*6^(n-1)-2^(n-1), 3); \\ Michel Marcus, Nov 02 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 01 2018
STATUS
approved