

A320999


Related to the enumeration of pseudosquare convex polyominoes by semiperimeter.


2



1, 0, 2, 2, 3, 0, 11, 0, 5, 10, 12, 0, 20, 0, 25, 16, 9, 0, 51, 12, 11, 22, 39, 0, 69, 0, 46, 28, 15, 38, 104, 0, 17, 34, 105, 0, 105, 0, 67, 92, 21, 0, 175, 30, 82, 46, 81, 0, 141, 66, 159, 52, 27, 0, 299, 0, 29, 140, 144, 80, 177, 0, 109, 64, 213, 0, 374, 0, 35
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

6,3


COMMENTS

It would be nice to have a more precise definition.
The g.f. is not Dfinite.


LINKS

Andrew Howroyd, Table of n, a(n) for n = 6..1000
Srecko Brlek, Andrea Frosini, Simone Rinaldi, Laurent Vuillon, Tilings by translation: enumeration by a rational language approach, The Electronic Journal of Combinatorics, vol. 13, (2006). See Section 4.2.


FORMULA

G.f.: Sum_{k>=1} k*x^(3*(k+1))/(1x^(k+1))^2.  Andrew Howroyd, Oct 31 2018


MAPLE

seq(coeff(series(add(k*x^(3*(k+1))/(1x^(k+1))^2, k=1..n), x, n+1), x, n), n = 6 .. 75); # Muniru A Asiru, Oct 31 2018


MATHEMATICA

kmax = 80;
Sum[k*x^(3*(k+1))/(1x^(k+1))^2, {k, 1, kmax}] + O[x]^kmax // CoefficientList[#, x]& // Drop[#, 6]& (* JeanFrançois Alcover, Sep 10 2019 *)


PROG

(PARI) seq(n)={Vec(sum(k=1, ceil(n/3), k*x^(3*(k+1))/(1x^(k+1))^2 + O(x^(6+n))))} \\ Andrew Howroyd, Oct 31 2018


CROSSREFS

Cf. A320998.
Sequence in context: A199784 A127466 A099118 * A107098 A293837 A181736
Adjacent sequences: A320996 A320997 A320998 * A321000 A321001 A321002


KEYWORD

nonn


AUTHOR

N. J. A. Sloane, Oct 30 2018


EXTENSIONS

Terms a(33) and beyond from Andrew Howroyd, Oct 31 2018


STATUS

approved



