|
|
A320993
|
|
Number of connected self-dual marked graphs on 2n nodes.
|
|
1
|
|
|
1, 1, 6, 81, 2796, 285205, 96322648, 112087066485, 458071927263177, 6665704296474517580, 349377209492189224235030, 66602723163954143548104716149, 46557323273646194397454383970079368, 120168498151800396724425771086539073209571, 1152049915423012273792614840558950392103437052846
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Andrew Howroyd, Table of n, a(n) for n = 0..50
Edward A. Bender and E. Rodney Canfield, Enumeration of connected invariant graphs, Journal of Combinatorial Theory, Series B 34.3 (1983): 268-278. See p. 274.
Andrew Howroyd, PARI Program
|
|
FORMULA
|
a(2*n-1) = b(2*n-1) - A054921(2*n-1)/2, a(2*n) = b(2*n) - (A054921(2*n)-a(n))/2 where b is the Inverse Euler transform of A000595. - Andrew Howroyd, Jan 27 2020
|
|
PROG
|
(PARI) \\ See link for program.
A320993seq(15) \\ Andrew Howroyd, Jan 27 2020
|
|
CROSSREFS
|
Cf. A000666 (not necessarily connected marked graphs), A000595 (self dual on 2n nodes), A054921 (connected marked graphs).
Sequence in context: A076282 A121790 A279203 * A032491 A135624 A222197
Adjacent sequences: A320990 A320991 A320992 * A320994 A320995 A320996
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane, Oct 26 2018
|
|
EXTENSIONS
|
a(0)=1 prepended and terms a(7) and beyond from Andrew Howroyd, Jan 26 2020
|
|
STATUS
|
approved
|
|
|
|