OFFSET
1,2
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..385
N. J. A. Sloane, Transforms
FORMULA
a(n) = n * [x^n] -log(Product_{k>=1} (1 - x^k)^sigma_n(k)).
a(n) = Sum_{d|n} d^(n+1)*sigma_1(n/d).
a(n) ~ n^(n+1). - Vaclav Kotesovec, Feb 16 2020
EXAMPLE
a(6) = 1*sigma_6(1)+2*sigma_6(2)+3*sigma_6(3)+6*sigma_6(6) = 1+2*65+3*730+6*47450 = 287021.
MAPLE
with(numtheory): seq(coeff(series(n*(-log(mul((1-x^k)^sigma[n](k), k=1..n))), x, n+1), x, n), n = 1 .. 20); # Muniru A Asiru, Oct 28 2018
MATHEMATICA
Table[Sum[d DivisorSigma[n, d], {d, Divisors[n]}] , {n, 18}]
Table[n SeriesCoefficient[-Log[Product[(1 - x^k)^DivisorSigma[n, k], {k, 1, n}]], {x, 0, n}], {n, 18}]
PROG
(PARI) a(n) = sumdiv(n, d, d*sigma(d, n)); \\ Michel Marcus, Oct 28 2018
(Python)
from sympy import divisor_sigma, divisors
def A320940(n):
return sum(divisor_sigma(d)*(n//d)**(n+1) for d in divisors(n, generator=True)) # Chai Wah Wu, Feb 15 2020
(Magma) [&+[d*DivisorSigma(n, d):d in Divisors(n)]:n in [1..18]]; // Marius A. Burtea, Feb 15 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Oct 28 2018
STATUS
approved