OFFSET
1,1
COMMENTS
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
An integer partition is connected and multigraphical if it comprises the multiset of vertex-degrees of some connected multigraph.
EXAMPLE
The sequence of all connected multigraphical partitions begins: (11), (22), (211), (33), (222), (321), (2211), (3111), (44), (422), (431), (332), (2222), (4211), (3221), (3311), (22211), (41111), (32111).
MATHEMATICA
prptns[m_]:=Union[Sort/@If[Length[m]==0, {{}}, Join@@Table[Prepend[#, m[[ipr]]]&/@prptns[Delete[m, List/@ipr]], {ipr, Select[Prepend[{#}, 1]&/@Select[Range[2, Length[m]], m[[#]]>m[[#-1]]&], UnsameQ@@m[[#]]&]}]]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Union[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
Select[Range[1000], Select[prptns[Flatten[MapIndexed[Table[#2, {#1}]&, If[#==1, {}, Flatten[Cases[FactorInteger[#], {p_, k_}:>Table[PrimePi[p], {k}]]]]]]], Length[csm[#]]==1&]!={}&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 24 2018
STATUS
approved