login
A320901
Expansion of Sum_{k>=1} x^k/(1 + x^k)^4.
4
1, -3, 11, -23, 36, -49, 85, -143, 176, -188, 287, -433, 456, -479, 726, -959, 970, -1024, 1331, -1748, 1866, -1741, 2301, -3153, 2961, -2824, 3830, -4559, 4496, -4514, 5457, -6943, 6842, -6174, 7890, -9844, 9140, -8553, 11126, -13348, 12342, -11998, 14191, -16941
OFFSET
1,2
LINKS
FORMULA
G.f.: Sum_{k>=1} (-1)^(k+1)*A000292(k)*x^k/(1 - x^k).
a(n) = Sum_{d|n} (-1)^(d+1)*d*(d + 1)*(d + 2)/6.
a(n) = (4*A000593(n) + 6*A050999(n) + 2*A051000(n) - 2*A000203(n) - 3*A001157(n) - A001158(n))/6.
MAPLE
seq(coeff(series(add(x^k/(1+x^k)^4, k=1..n), x, n+1), x, n), n = 1 .. 45); # Muniru A Asiru, Oct 23 2018
MATHEMATICA
nmax = 44; Rest[CoefficientList[Series[Sum[x^k/(1 + x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x]]
Table[Sum[(-1)^(d + 1) d (d + 1) (d + 2)/6, {d, Divisors[n]}], {n, 44}]
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Oct 23 2018
STATUS
approved