login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A320896 a(n) = Sum_{k=1..n} k * tau(k)^2, where tau is A000005. 2
1, 9, 21, 57, 77, 173, 201, 329, 410, 570, 614, 1046, 1098, 1322, 1562, 1962, 2030, 2678, 2754, 3474, 3810, 4162, 4254, 5790, 6015, 6431, 6863, 7871, 7987, 9907, 10031, 11183, 11711, 12255, 12815, 15731, 15879, 16487, 17111, 19671, 19835, 22523, 22695, 24279 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..44.

Ramanujan's Papers, Some formulas in the analytic theory of numbers, Messenger of Mathematics, XLV, 1916, 81-84.

FORMULA

a(n) ~ n^2 * (3*(Pi^6*(-1 - 24*g^2 + 32*g^3 + g*(8 - 96*s1) + 16*s1 + 16*s2) - 13824*z1^3 + 576*Pi^2*z1*((-1 + 8*g)*z1 + 4*z2) - 8*Pi^4*(3*(1 - 8*g + 24*g^2 - 16*s1)*z1 - 6*z2 + 48*g*z2 + 8*z3)) + 6*(Pi^6*(1 - 8*g + 24*g^2 - 16*s1) + 576*Pi^2*z1^2 - 24*Pi^4*(-z1 + 8*g*z1 + 2*z2))*log(n) + 6*((-1 + 8*g)*Pi^6 - 24*Pi^4*z1)*log(n)^2 + 4*Pi^6*log(n)^3) / (8*Pi^8), where g is the Euler-Mascheroni constant A001620, z1 = Zeta'(2) = A073002, z2 = Zeta''(2) = A201994, z3 = Zeta'''(2) = A201995 and s1, s2 are the Stieltjes constants, see A082633 and A086279.

MATHEMATICA

Accumulate[Table[k*DivisorSigma[0, k]^2, {k, 1, 50}]]

PROG

(PARI) a(n) = sum(k=1, n, k*numdiv(k)^2); \\ Michel Marcus, Oct 23 2018

CROSSREFS

Cf. A061502, A318755, A320897.

Cf. A000005, A006218, A143127, A319085, A320895.

Sequence in context: A147169 A216167 A246327 * A127989 A147337 A020290

Adjacent sequences:  A320893 A320894 A320895 * A320897 A320898 A320899

KEYWORD

nonn

AUTHOR

Vaclav Kotesovec, Oct 23 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 22 16:50 EDT 2020. Contains 337291 sequences. (Running on oeis4.)