The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A320883 3-smooth numbers of the form (ab+1)(ac+1), a > b > c > 0. 5
 96, 288, 3888, 4608, 31104, 69984, 2654208, 2985984, 4478976, 1088391168, 1528823808, 440301256704 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Subsequence of A320884 = 5-smooth terms of A180045, finite according to Corvaja & Zannier. Can someone prove that a(12) = 440301256704 = (2359*889 + 1)(2359*89 + 1) = 2^26 * 3^8 is the last term? LINKS P. Corvaja and U. Zannier, On the greatest prime factor of (ab+1)(ac+1), Proceedings of the American Mathematical Society 131 (2003), pp. 1705-1709. See also arXiv:math/0205136 [math.NT], 2002. FORMULA Intersection of A180045 = {(ab+1)(ac+1); a > b > c > 0} and A003586 (3-smooth numbers). MATHEMATICA (* This is only a recomputation of the existing sequence. *) (* Max exponents: *) jmax = 26; kmax = 12; r[j_, k_] := Reduce[a > b > c > 0 && (a b + 1)(a c + 1) == 2^j*3^k , {a, b, c}, Integers]; Reap[Do[rr = r[j, k]; If[rr =!= False, Print[{j, k, 2^j*3^k}]; Sow[2^j*3^k]], {j, 1, jmax}, {k, 1, kmax}]][[2, 1]] // Union (* Jean-François Alcover, Dec 05 2018 *) PROG (PARI) A320883(LIM=35, S=[])={for(m=1, LIM, for(k=0, m, is_A180045(3^k<<(m-k))&& S=setunion(S, [3^k<<(m-k)]))); S} \\ Gives all terms up to 2^LIM and possibly some larger terms up to 3^LIM. is_A320883(n)={vecmax(factor(n, 3)[, 1])<4 && is_A180045(n)} CROSSREFS Cf. A180045 = {(ab+1)(ac+1); a > b > c > 0}, A320884 (5-smooth terms of A180045), A003586 (3-smooth numbers). Sequence in context: A202591 A202584 A062027 * A048189 A304830 A301459 Adjacent sequences:  A320880 A320881 A320882 * A320884 A320885 A320886 KEYWORD nonn,fini AUTHOR M. F. Hasler, Nov 19 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 8 11:12 EDT 2020. Contains 336293 sequences. (Running on oeis4.)