login
A320879
Primes such that iteration of A062028 (n + its digit sum) yields 7 primes in a row.
5
286330897, 10858338851, 12869802851, 15845166851, 29837412851, 45480846799, 56676324799, 56676324863, 68105187851, 73915118861, 114737845853, 129282912851, 154648223809, 155738371853, 207036953861, 271077075851, 358515148853, 373169411809, 373169411861, 395705343799
OFFSET
1,1
COMMENTS
The first 15 terms are immediately calculated from A320878(1..200) using the formula.
LINKS
Lars Blomberg, Table of n, a(n) for n = 1..445 (Terms < 10^14)
Carlos Rivera, Puzzle 163. P+SOD(P)
FORMULA
A320879 = { n in A320878 | A062028(n) in A320878 } = { n = A320878(k) | A062028(n) = A320878(k+1) }.
PROG
(PARI) is_A320879(n)=isprime(n=A062028(n))&& is_A320878(n) \\ If possible, use this to select terms from a sufficiently large precomputed array A320878:
A320879 = select( is_A320879, A320878) \\ or, in that case, the more efficient:
A320879 = select( p->setsearch(A320878, A062028(p)), A320878) \\ or: vecextract(A320878, select(i->A062028(A320878[i])==A320878[i+1], [1..#A320878-1]))
CROSSREFS
Cf. A047791, A048519, A062028 (n + digit sum of n).
a(1) = A090009(8) = start of first chain of 8 primes under iteration of A062028.
Subsequence of A320878; A320880 is a subsequence.
Sequence in context: A267824 A185428 A320878 * A214155 A344518 A344519
KEYWORD
nonn,base
AUTHOR
Zak Seidov and M. F. Hasler, Nov 08 2018
EXTENSIONS
a(16)-a(20) from Lars Blomberg, Feb 10 2019
STATUS
approved