login
A320836
a(n) = Sum (-1)^k where the sum is over all strict multiset partitions of a multiset whose multiplicities are the prime indices of n and k is the number of parts, or strict factorizations of A181821(n).
3
1, -1, -1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, -1, -1, 0, -2, -1, 0, -2, 0, -2, -1, -1, -1, -4, -1, -1, -1, -3, 0, -3, 0, -2, -4, -1, -1, -6, -2, -3, -2, -2, 0, -6, -2, -4, -1, -1, 0, -5, 0, -1, -3, -9, -2, -3, 0, -2, -1, -3, 0, -7, 0
OFFSET
1,27
COMMENTS
This multiset (row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
LINKS
FORMULA
a(n) = A114592(A181821(n)).
MAPLE
with(numtheory):
b:= proc(n, k) option remember; `if`(n>k, 0, -1)+`if`(isprime(n), 0,
-add(`if`(d>k, 0, b(n/d, d-1)), d=divisors(n) minus {1, n}))
end:
a:= n-> `if`(n=1, 1, b(((l-> mul(ithprime(i)^l[i], i=1..nops(l)))(
sort(map(i-> pi(i[1])$i[2], ifactors(n)[2]), `>`)))$2)):
seq(a(n), n=1..100); # Alois P. Heinz, Oct 23 2018
MATHEMATICA
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]], {#1}]&, If[n==1, {}, Flatten[Cases[FactorInteger[n]//Reverse, {p_, k_}:>Table[PrimePi[p], {k}]]]]];
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
Table[Sum[(-1)^Length[m], {m, Select[mps[nrmptn[n]], UnsameQ@@#&]}], {n, 30}]
KEYWORD
sign,look
AUTHOR
Gus Wiseman, Oct 21 2018
EXTENSIONS
More terms from Alois P. Heinz, Oct 21 2018
STATUS
approved