OFFSET
0,4
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
FORMULA
MAPLE
ogf := x -> -sqrt(1 - 4*x)*(2*x - 1)/(3*x - 1);
ser := series(ogf(x), x, 30); seq(coeff(ser, x, k), k=0..27);
# By recurrence:
a := proc(n) option remember; if n <= 4 then return [-1, 1, 1, 3, 11][n+1] fi;
((-90+66*n-12*n^2)*a(n-2)+(30-34*n+7*n^2)*a(n-1))/((n-4)*n) end:
seq(a(n), n=0..27);
MATHEMATICA
a[n_] := (-4)^n Binomial[3/2, n]((4/3)n - 2 + Hypergeometric2F1[1, -n, 5/2 - n, 3/4]); Table[a[n], {n, 0, 27}]
CoefficientList[Series[Sqrt[1-4*x]*(1-2*x)/(3*x-1), {x, 0, 40}], x] (* G. C. Greubel, Oct 27 2018 *)
PROG
(PARI) x='x+O('x^40); Vec(sqrt(1-4*x)*(1-2*x)/(3*x-1)) \\ G. C. Greubel, Oct 27 2018
(Magma) m:=40; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!(Sqrt(1-4*x)*(1-2*x)/(3*x-1))); // G. C. Greubel, Oct 27 2018
CROSSREFS
KEYWORD
sign
AUTHOR
Peter Luschny, Oct 23 2018
STATUS
approved