login
A320793
Number of multisets of exactly eight partitions of positive integers into distinct parts with total sum of parts equal to n.
2
1, 1, 3, 5, 11, 19, 37, 63, 115, 194, 336, 558, 938, 1530, 2508, 4030, 6472, 10246, 16179, 25270, 39325, 60664, 93187, 142119, 215800, 325647, 489288, 731154, 1087981, 1611036, 2375905, 3488306, 5101755, 7430869, 10783473, 15589092, 22457429, 32236645
OFFSET
8,3
LINKS
FORMULA
a(n) = [x^n y^8] Product_{j>=1} 1/(1-y*x^j)^A000009(j).
MAPLE
g:= proc(n) option remember; `if`(n=0, 1, add(add(`if`(d::odd,
d, 0), d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
end:
b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1)*x^j*binomial(g(i)+j-1, j), j=0..n/i))), x, 9)
end:
a:= n-> coeff(b(n$2), x, 8):
seq(a(n), n=8..60);
CROSSREFS
Column k=8 of A285229.
Cf. A000009.
Sequence in context: A078722 A320791 A320792 * A320794 A320795 A285230
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 21 2018
STATUS
approved