login
A320782
Inverse Euler transform of the unsigned Moebius function A008966.
7
1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -2, 3, 0, -1, -3, 6, -3, 0, -6, 12, -6, 0, -9, 23, -17, 0, -15, 47, -40, 8, -24, 91, -101, 34, -46, 181, -230, 109, -92, 354, -534, 323, -208, 690, -1177, 883, -520, 1365, -2603, 2297, -1377, 2760, -5641, 5789, -3721, 5741
OFFSET
0,13
COMMENTS
The Euler transform of a sequence q is the sequence of coefficients of x^n, n > 0, in the expansion of Product_{n > 0} 1/(1 - x^n)^q(n). The constant term 1 is sometimes taken to be the zeroth part of the Euler transform.
MATHEMATICA
EulerInvTransform[{}]={}; EulerInvTransform[seq_]:=Module[{final={}}, For[i=1, i<=Length[seq], i++, AppendTo[final, i*seq[[i]]-Sum[final[[d]]*seq[[i-d]], {d, i-1}]]];
Table[Sum[MoebiusMu[i/d]*final[[d]], {d, Divisors[i]}]/i, {i, Length[seq]}]];
EulerInvTransform[Table[Abs[MoebiusMu[n]], {n, 30}]]
CROSSREFS
Number theoretical functions: A000005, A000010, A000203, A001055, A001221, A001222, A008683, A010054.
Inverse Euler transforms: A059966, A320767, A320776, A320777, A320778, A320779, A320780, A320781.
Sequence in context: A195467 A112168 A072516 * A191588 A106450 A255961
KEYWORD
sign
AUTHOR
Gus Wiseman, Oct 22 2018
STATUS
approved