login
A320776
Inverse Euler transform of the number of prime factors (with multiplicity) function A001222.
7
1, 0, 1, 1, 1, 0, -1, -1, 0, 1, 0, -1, -1, -1, 1, 3, 3, -2, -5, -4, 0, 7, 7, 0, -9, -10, 2, 15, 15, -3, -27, -30, 3, 46, 51, 1, -71, -91, -7, 117, 157, 23, -194, -265, -57, 318, 465, 111, -536, -821, -230, 893, 1456, 505, -1485, -2559, -1036, 2433, 4483, 2022
OFFSET
0,16
COMMENTS
The Euler transform of a sequence q is the sequence of coefficients of x^n, n > 0, in the expansion of Product_{n > 0} 1/(1 - x^n)^q(n). The constant term 1 is sometimes taken to be the zeroth part of the Euler transform.
MAPLE
# The function EulerInvTransform is defined in A358451.
a := EulerInvTransform(n -> ifelse(n=0, 1, NumberTheory:-NumberOfPrimeFactors(n))):
seq(a(n), n = 0..59); # Peter Luschny, Nov 21 2022
MATHEMATICA
EulerInvTransform[{}]={}; EulerInvTransform[seq_]:=Module[{final={}}, For[i=1, i<=Length[seq], i++, AppendTo[final, i*seq[[i]]-Sum[final[[d]]*seq[[i-d]], {d, i-1}]]];
Table[Sum[MoebiusMu[i/d]*final[[d]], {d, Divisors[i]}]/i, {i, Length[seq]}]];
EulerInvTransform[Array[PrimeOmega, 100]]
CROSSREFS
Number theoretical functions: A000005, A000010, A000203, A001055, A001221, A001222, A008683, A010054.
Inverse Euler transforms: A059966, A320767, A320777, A320778, A320779, A320780, A320781, A320782.
Sequence in context: A116644 A166462 A328177 * A279056 A265751 A143050
KEYWORD
sign
AUTHOR
Gus Wiseman, Oct 22 2018
STATUS
approved