Continued fractions with period 1 or 2

If k is an integer between m^{2} and $(m+1)^{2}, m>0$, it can be written as

$$
k=m^{2}+r, \quad 1 \leq r \leq 2 m
$$

\sqrt{k} has a continued fraction $k=\left[a_{0} ; a_{1}, a_{2}, a_{1}, a_{2}, \ldots\right]$ (period 1 or 2), if, and only if, r is a divisor of 2 m . Then $a_{0}=m, a_{1}=\frac{2 m}{r}, a_{2}=2 m$.

Proof:
$a_{0}=m$, remainder: $\varepsilon_{0}=\sqrt{m^{2}+r}-m, 0 \leq \varepsilon_{0}<1$
Following remainders: $\varepsilon_{j}=\frac{1}{\varepsilon_{j-1}}-a_{j}$
Period 1: $\varepsilon_{1}=\varepsilon_{0}, \quad$ period 2: $\varepsilon_{2}=\varepsilon_{0}$
$\frac{1}{\varepsilon_{0}}=\frac{1}{\sqrt{m^{2}+r}-m}=\frac{\sqrt{m^{2}+r}+m}{r}=a_{1}+\varepsilon_{1}$ with $a_{1}=\left\lfloor\frac{2 m}{r}\right\rfloor$ or (1) $a_{1}=\frac{2 m-s}{r}, s=(2 m) \bmod r$.
$\underline{r=1}: a_{1}=2 m$ and $\varepsilon_{1}=\sqrt{m^{2}+1}-m=\varepsilon_{0}($ period 1$)$
$\underline{r>1:} \quad \varepsilon_{1}=\frac{1}{\varepsilon_{0}}-a_{1}=\frac{\sqrt{m^{2}+r}+m}{r}-\frac{2 m-s}{r}=\frac{\sqrt{m^{2}+r}-(m-s)}{r}$

$$
\frac{1}{\varepsilon_{1}}=\frac{r}{\sqrt{m^{2}+r}-(m-s)}=\frac{r\left(\sqrt{m^{2}+r}+m-s\right)}{m^{2}+r-(m-s)^{2}}
$$

Denominator: $r+s(2 m-s)=r+s r a_{1}$, see (1).

$$
\text { Reduced fraction: } \frac{1}{\varepsilon_{1}}=\frac{\sqrt{m^{2}+r}+m-s}{1+s a_{1}}
$$

The period 2 requires $\varepsilon_{2}=\varepsilon_{0}$ after the next step and therefore

$$
\frac{1}{\varepsilon_{1}}=\sqrt{m^{2}+r}+c
$$

For that, $1+s a_{1}=1$ or $s=0$.
Then $c=m$ and $a_{2}=2 m$ and $\varepsilon_{2}=\frac{1}{\varepsilon_{1}}-a_{2}=\sqrt{m^{2}+r}-m=\varepsilon_{0}$ (period 2)
With $s=0, a_{1}=\frac{2 m}{r}$ is an integer and r a divisor of $2 m$. (q.e.d.)
As a trivial consequence, the number of terms $k=m^{2}+r$, which are between m^{2} and $(m+1)^{2}$, is equal to the number of divisors of $2 m$.

Continued fraction: $k=\left[m ; \frac{2 m}{r}, 2 m, \frac{2 m}{r}, 2 m, \ldots\right]$

