Continued fractions with period 1 or 2

If k is an integer between m? and (m + 1), m > 0, it can be written as

k=m?+r, 1<r<2m
Vk has a continued fraction k = lag; ai,a,,aq,a,,...] (period 1 or 2), if, and
P - 2m
only if, ris a divisor of 2 m. Then a, = m,a, = —ay = 2m.

Proof:
a, = m,remainder: g, =Vvm? +r—m,0<¢, <1
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Following remainders: ¢; = — —a;
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Period 1: &; = &, period 2: &, = ¢
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r=1:a, =2mandg =vVvm? + 1 —m = g, (period 1)
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Denominator: r + s(2m — s) = r + sra4, see (1).
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Reduced fraction: — = )
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The period 2 requires &, = ¢, after the next step and therefore
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Forthat,1+sa; =1or s =0.
Thenc =mand a, = 2mand ¢, =£i—a2 =Vm? +r —m = g, (period 2)
1

Withs =0, a, = sz is an integer and r a divisor of 2m. (q.e.d.)

As a trivial consequence, the number of terms k = m? + r, which are between
m? and (m + 1)?, is equal to the number of divisors of 2m.

Continued fraction: k = [m; ZTm,Zm,ZTm, 2m, ]



