The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A320749 Number of chiral pairs of color patterns (set partitions) in a cycle of length n. 4
 0, 0, 0, 0, 0, 6, 34, 190, 1011, 5352, 29740, 172466, 1055232, 6793791, 46034940, 327303819, 2436650368, 18944771253, 153488081102, 1293086505784, 11306373089104, 102425178180769, 959825673145688, 9290807818971900, 92771800581171418, 954447025978145744, 10105871186441842623, 110009631951698573068, 1229996584263621368224, 14112483571723367245825, 166021918475962174194914, 2001010469483653602192695 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,6 COMMENTS Two color patterns are equivalent if the colors are permuted. Adnk[d,n,k] in Mathematica program is coefficient of x^k in A(d,n)(x) in Gilbert and Riordan reference. LINKS Andrew Howroyd, Table of n, a(n) for n = 1..200 E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665. FORMULA a(n) = Sum_{j=1..n} -Ach(n,j)/2 + (1/2n)*Sum_{d|n} phi(d)*A(d,n/d,j), where Ach(n,k) = [n>=0 & n<2 & n==k] + [n>1]*(k*Ach(n-2,k) + Ach(n-2,k-1) + Ach(n-2,k-2)) and A(d,n,k) = [n==0 & k==0] + [n>0 & k>0]*(k*A(d,n-1,k) + Sum_{j|d} A(d,n-1,k-j)). a(n) = (A084423(n) - A080107(n)) / 2 = A084423(n) - A084708(n) = A084708(n) - A080107(n). EXAMPLE For a(6)=6, the chiral pairs are AAABBC-AAABCC, AABABC-AABCAC, AABACB-AABCAB, AABACC-AABBAC, AABACD-AABCAD, and AABCBD-AABCDC. MATHEMATICA Adnk[d_, n_, k_] := Adnk[d, n, k] = If[n>0 && k>0, Adnk[d, n-1, k]k + DivisorSum[d, Adnk[d, n-1, k-#]&], Boole[n==0 && k==0]] Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2, k] + Ach[n-2, k-1] + Ach[n-2, k-2]] Table[Sum[(DivisorSum[n, EulerPhi[#] Adnk[#, n/#, j]&]/n - Ach[n, j])/2, {j, n}], {n, 40}] CROSSREFS Row sums of A320647. Columns of A320742 converge to this as k increases. Cf. A084423 (oriented), A084708 (unoriented), A080107 (achiral). Sequence in context: A125343 A163350 A320746 * A052264 A049608 A244937 Adjacent sequences: A320746 A320747 A320748 * A320750 A320751 A320752 KEYWORD nonn,easy AUTHOR Robert A. Russell, Oct 22 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 29 01:41 EST 2023. Contains 359905 sequences. (Running on oeis4.)