login
A320696
Number of partitions of n with up to nine distinct kinds of 1.
2
1, 9, 37, 94, 173, 266, 388, 568, 826, 1176, 1641, 2256, 3064, 4115, 5472, 7215, 9437, 12250, 15798, 20253, 25813, 32721, 41277, 51836, 64813, 80700, 100093, 123707, 152370, 187047, 228895, 279284, 339806, 412322, 499014, 602430, 725543, 871815, 1045274
OFFSET
0,2
LINKS
FORMULA
a(n) ~ Pi * 2^(13/2) * exp(Pi*sqrt(2*n/3)) / (3 * n^(3/2)). - Vaclav Kotesovec, Oct 24 2018
G.f.: (1 + x)^9 * Product_{k>=2} 1 / (1 - x^k). - Ilya Gutkovskiy, Apr 24 2021
MAPLE
b:= proc(n, i) option remember; `if`(n=0 or i=1,
binomial(9, n), `if`(i>n, 0, b(n-i, i))+b(n, i-1))
end:
a:= n-> b(n$2):
seq(a(n), n=0..60);
CROSSREFS
Column k=9 of A292622.
Sequence in context: A022276 A171443 A341403 * A299290 A304290 A244245
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 19 2018
STATUS
approved