login
A320695
Number of partitions of n with up to eight distinct kinds of 1.
2
1, 8, 29, 65, 108, 158, 230, 338, 488, 688, 953, 1303, 1761, 2354, 3118, 4097, 5340, 6910, 8888, 11365, 14448, 18273, 23004, 28832, 35981, 44719, 55374, 68333, 84037, 103010, 125885, 153399, 186407, 225915, 273099, 329331, 396212, 475603, 569671, 680926
OFFSET
0,2
LINKS
FORMULA
a(n) ~ Pi * 2^(11/2) * exp(Pi*sqrt(2*n/3)) / (3 * n^(3/2)). - Vaclav Kotesovec, Oct 24 2018
G.f.: (1 + x)^8 * Product_{k>=2} 1 / (1 - x^k). - Ilya Gutkovskiy, Apr 24 2021
MAPLE
b:= proc(n, i) option remember; `if`(n=0 or i=1,
binomial(8, n), `if`(i>n, 0, b(n-i, i))+b(n, i-1))
end:
a:= n-> b(n$2):
seq(a(n), n=0..60);
CROSSREFS
Column k=8 of A292622.
Sequence in context: A171442 A341402 A247541 * A093809 A244244 A037157
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 19 2018
STATUS
approved