login
Number of factorizations of n into semiprimes. Number of multiset partitions of the multiset of prime factors of n, into pairs.
64

%I #13 Jan 18 2021 06:22:59

%S 1,0,0,1,0,1,0,0,1,1,0,0,0,1,1,1,0,0,0,0,1,1,0,1,1,1,0,0,0,0,0,0,1,1,

%T 1,2,0,1,1,1,0,0,0,0,0,1,0,0,1,0,1,0,0,1,1,1,1,1,0,2,0,1,0,1,1,0,0,0,

%U 1,0,0,0,0,1,0,0,1,0,0,0,1,1,0,2,1,1,1,1,0,2,1,0,1,1,1,1,0,0,0,2,0,0,0,1,0

%N Number of factorizations of n into semiprimes. Number of multiset partitions of the multiset of prime factors of n, into pairs.

%C The characteristic function of nonzero terms is A065043. - _R. J. Mathar_, Jan 18 2021

%H Antti Karttunen, <a href="/A320655/b320655.txt">Table of n, a(n) for n = 1..65537</a>

%e The a(900) = 5 factorizations into semiprimes:

%e 900 = (4*9*25)

%e 900 = (4*15*15)

%e 900 = (6*6*25)

%e 900 = (6*10*15)

%e 900 = (9*10*10)

%e The a(900) = 5 multiset partitions into pairs:

%e {{1,1},{2,2},{3,3}}

%e {{1,1},{2,3},{2,3}}

%e {{1,2},{1,2},{3,3}}

%e {{1,2},{1,3},{2,3}}

%e {{2,2},{1,3},{1,3}}

%t semfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[semfacs[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],PrimeOmega[#]==2&]}]];

%t Table[Length[semfacs[n]],{n,100}]

%o (PARI) A320655(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((2==bigomega(d)&&(d<=m)), s += A320655(n/d, d))); (s)); \\ _Antti Karttunen_, Dec 06 2020

%Y The positions of zeros are A026424.

%Y Cf. A001055, A001222, A001358, A007716, A007717, A056239, A112798, A318871, A318953, A320462, A320656, A320658, A320659.

%K nonn

%O 1,36

%A _Gus Wiseman_, Oct 18 2018

%E Data section extended up to 105 terms by _Antti Karttunen_, Dec 06 2020