login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A320652 Expansion of 1/(2 - Product_{k>=1} 1/(1 - k*x^k)). 1
1, 1, 4, 13, 45, 147, 497, 1643, 5490, 18252, 60812, 202364, 673915, 2243295, 7468973, 24865272, 82783967, 275605513, 917563193, 3054785032, 10170143277, 33858882922, 112724577088, 375287739083, 1249425198725, 4159643200494, 13848474406054, 46104972636634, 153494780854254 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Invert transform of A006906.

LINKS

Table of n, a(n) for n=0..28.

N. J. A. Sloane, Transforms

FORMULA

G.f.: 1/(1 - Sum_{k>=1} k*x^k / Product_{j=1..k} (1 - j*x^j)).

a(0) = 1; a(n) = Sum_{k=1..n} A006906(k)*a(n-k).

MAPLE

a:=series(1/(2-mul(1/(1-k*x^k), k=1..100)), x=0, 29): seq(coeff(a, x, n), n=0..28); # Paolo P. Lava, Apr 02 2019

MATHEMATICA

nmax = 28; CoefficientList[Series[1/(2 - Product[1/(1 - k x^k), {k, 1, nmax}]), {x, 0, nmax}], x]

nmax = 28; CoefficientList[Series[1/(1 - Sum[k x^k/Product[(1 - j x^j), {j, 1, k}], {k, 1, nmax}]), {x, 0, nmax}], x]

a[0] = 1; a[n_] := a[n] = Sum[Total[Times@@@IntegerPartitions[k]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 28}]

CROSSREFS

Cf. A006906, A055887, A257674, A299162.

Sequence in context: A285188 A192255 A035356 * A203573 A214997 A189348

Adjacent sequences:  A320649 A320650 A320651 * A320653 A320654 A320655

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Oct 18 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 3 00:35 EDT 2020. Contains 333195 sequences. (Running on oeis4.)