login
A320566
Expansion of e.g.f. exp(x) * Product_{k>=1} 1/(1 - x^k/k!).
6
1, 2, 6, 23, 110, 617, 4035, 29927, 249926, 2316317, 23674841, 264329177, 3207278255, 42011308653, 591460307157, 8905905152798, 142897741683846, 2433947385964373, 43873382718719949, 834402502632550589, 16699964488044322205, 350869837371828862607, 7721899536993122262447
OFFSET
0,2
COMMENTS
Binomial transform of A005651.
LINKS
N. J. A. Sloane, Transforms
FORMULA
E.g.f.: exp(x + Sum_{k>=1} Sum_{j>=1} x^(j*k)/(k*(j!)^k)).
a(n) = Sum_{k=0..n} binomial(n,k)*A005651(k).
a(n) ~ exp(1) * A247551 * n!. - Vaclav Kotesovec, Jul 21 2019
MAPLE
seq(coeff(series(factorial(n)*exp(x)*mul((1-x^k/factorial(k))^(-1), k=1..n), x, n+1), x, n), n = 0 .. 22); # Muniru A Asiru, Oct 15 2018
MATHEMATICA
nmax = 22; CoefficientList[Series[Exp[x] Product[1/(1 - x^k/k!), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 22; CoefficientList[Series[Exp[x + Sum[Sum[x^(j k)/(k (j!)^k), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[Binomial[n, k] Total[Apply[Multinomial, IntegerPartitions[k], {1}]], {k, 0, n}], {n, 0, 22}]
CROSSREFS
Row sums of A327801.
Sequence in context: A208733 A264899 A224786 * A205802 A117226 A117156
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Oct 15 2018
STATUS
approved