OFFSET
0,3
COMMENTS
First differences of the binomial transform of A026007.
LINKS
N. J. A. Sloane, Transforms
FORMULA
G.f.: exp(Sum_{k>=1} (-1)^(k+1)*(1 - x)^k*x^k/(k*((1 - x)^k - x^k)^2)).
a(n) ~ Zeta(3)^(1/6) * 2^(n - 13/12) * exp(3^(4/3) * Zeta(3)^(1/3) * n^(2/3)/4 + (3*Zeta(3))^(2/3) * n^(1/3)/8 - Zeta(3)/16) / (3^(1/3) * sqrt(Pi) * n^(2/3)). - Vaclav Kotesovec, Oct 15 2018
MAPLE
seq(coeff(series(mul((1+x^k/(1-x)^k)^k, k=1..n), x, n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Oct 15 2018
MATHEMATICA
nmax = 30; CoefficientList[Series[Product[(1 + x^k/(1 - x)^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 30; CoefficientList[Series[Exp[Sum[(-1)^(k + 1) (1 - x)^k x^k/(k ((1 - x)^k - x^k)^2), {k, 1, nmax}]], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Oct 15 2018
STATUS
approved