login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A320530 T(n,k) = k^n + k^(n - 2)*n*(n - 1)*(k*(k - 1) + 1)/2 for 0 < k <= n and T(n,0) = A154272(n+1), square array read by antidiagonals upwards. 2
1, 1, 1, 0, 1, 1, 0, 2, 2, 1, 0, 4, 7, 3, 1, 0, 7, 26, 16, 4, 1, 0, 11, 88, 90, 29, 5, 1, 0, 16, 272, 459, 220, 46, 6, 1, 0, 22, 784, 2133, 1504, 440, 67, 7, 1, 0, 29, 2144, 9234, 9344, 3775, 774, 92, 8, 1, 0, 37, 5632, 37908, 54016, 29375, 7992, 1246, 121, 9 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,8
COMMENTS
Construct a length n ternary word over the alphabet {a, b, c} as follows: letters from the set {a, b} are only used in pairs of at most one, and consist of either (a,b), (b,a) or (b,b). Next, replace each occurrence of a, b and c with a length k binary word such that 'a' has exactly two letters 1, 'b' contains no 0's and 'c' has exactly one letter 0 (empty words otherwise, respectively). Then T(n,k) gives the number of length n*k binary words resulting from this substitution. First column follows from the next definition.
In Kauffman's language, T(n,k) is the number of ways of splitting the crossings of the Pretzel knot shadow P(k, k, ..., k) having n tangles, of k half-twists respectively, such that the final diagram consists of two Jordan curves. This result can be achieved by assigning each tangle of the Pretzel knot a length k binary words in a way that letters 1 and 0 indicate the adequate choice for splitting the crossings.
Columns are linear recurrence sequences with signature (3*k, -3*k^2, k^3).
REFERENCES
Louis H. Kauffman, Formal Knot Theory, Princeton University Press, 1983.
LINKS
Louis H. Kauffman, State models and the Jones polynomial, Topology, Vol. 26 (1987), 395-407.
Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
Alexander Stoimenow, Everywhere Equivalent 2-Component Links, Symmetry Vol. 7 (2015), 365-375.
Wikipedia, Pretzel link
FORMULA
T(n,k) = k^n + k^(n - 2)*binomial(n, 2)*(2*binomial(k, 2) + 1), k > 0.
T(n,k) = (3*k)*T(n-1,k) - (3*k^2)*T(n-2,k) + (k^3)*T(n-3,k), n > 3.
T(n,1) = A152947(n+1).
T(n,2) = A300451(n).
T(2,n) = A130883(n).
G.f. for columns: (1 - 2*k*x + (1 - k + 2*k^2)*x^2 )/(1 - k*x)^3.
E.g.f. for columns: ((1 - k + k^2)*x^2 + 2)*exp(k*x)/2.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
1, 2, 7, 16, 29, 46, 67, ...
0, 4, 26, 90, 220, 440, 774, ...
0, 7, 88, 459, 1504, 3775, 7992, ...
0, 11, 272, 2133, 9344, 29375, 74736, ...
0, 16, 784, 9234, 54016, 212500, 649296, ...
0, 22, 2144, 37908, 295936, 1456250, 5342112, ...
...
T(3,2) = 2^3 + 2^(3 - 2)*3*(3 - 1)*(2*(2 - 1) + 1)/2 = 26. The corresponding ternary words are abc, acb, cab, bac, bca, cba, bbc, bcb, cbb, ccc. Next, let a = {00}, b = {11} and c = {01, 10}. The resulting binary words are
abc: 001101, 001110;
acb: 000111, 001011;
cab: 010011, 100011;
bac: 110001, 110010;
bca: 110100, 111000;
cba: 011100, 101100;
bbc: 111101, 111110;
bcb: 110111, 111011;
cbb: 011111, 101111;
ccc: 010101, 101010, 010110, 011001, 100101, 101001, 100110, 011010.
MATHEMATICA
T[n_, k_] = If[k > 0, k^n + k^(n - 2)*n*(n - 1)*(k*(k - 1) + 1)/2, If[k == 0 && (n == 0 || n == 1), 1, 0]];
Table[Table[T[n - k, k], {k, 0, n}], {n, 0, 10}]//Flatten
PROG
(Maxima) t(n, k) := k^n + k^(n - 2)*binomial(n, 2)*(2*binomial(k, 2) + 1)$
u(n) := if n = 0 or n = 1 then 1 else 0$
T(n, k) := if k = 0 then u(n) else t(n, k)$
tabl(nn) := for n:0 thru 10 do print(makelist(T(n, k), k, 0, nn))$
CROSSREFS
Column 1 is column 2 of A300453.
Column 2 is column 2 of A300184.
Sequence in context: A198792 A196182 A107267 * A347986 A191239 A112161
KEYWORD
nonn,tabl,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 03:15 EDT 2024. Contains 371964 sequences. (Running on oeis4.)