login
A320512
Total number of nodes summed over all self-avoiding planar walks starting at (0,0), ending at (n,0), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1) such that (0,1) is never used directly before or after (1,0) or (1,1).
2
1, 5, 31, 258, 2702, 33821, 492978, 8198218, 153136209, 3173544162, 72241986729, 1791612993205, 48074653669593, 1387590910289915, 42863756641047136, 1410904918289665343, 49296029555617568097, 1822020250023113834772, 71023629427964322798782
OFFSET
0,2
LINKS
FORMULA
a(n) ~ c * n! * 2^n * n^(7/4), where c = 0.1758027947... - Vaclav Kotesovec, May 14 2020
MAPLE
b:= proc(x, y, i) option remember; (l-> `if`(min(x, y)<0, 0,
`if`(max(x, y)=0, [1$2], add(`if`({i, j} in {{1, 2}, {3, 5},
{4, 5}}, 0, (p-> p+[0, p[1]])(b(x-l[j][1], y-l[j][2], j))),
j=1..5))))([[-1, 1], [1, -1], [1, 1], [1, 0], [0, 1]])
end:
a:= n-> b(n, 0$2)[2]:
seq(a(n), n=0..20);
MATHEMATICA
b[x_, y_, i_] := b[x, y, i] = With[{l = {{-1, 1}, {1, -1}, {1, 1}, {1, 0}, {0, 1}}}, If[Min[x, y] < 0, {0, 0}, If[Max[x, y] == 0, {1, 1}, Sum[If[ MemberQ[{{1, 2}, {3, 5}, {4, 5}}, Sort@{i, j}], {0, 0}, Function[p, p + {0, p[[1]]}][b[x - l[[j]][[1]], y - l[[j]][[2]], j]]], {j, 5}]]]];
a[n_] := b[n, 0, 0][[2]];
a /@ Range[0, 20] (* Jean-François Alcover, May 14 2020, after Maple *)
CROSSREFS
Cf. A317985.
Sequence in context: A167137 A279434 A000556 * A125598 A267436 A294215
KEYWORD
nonn,walk
AUTHOR
Alois P. Heinz, Oct 22 2018
STATUS
approved