login
A320502
a(n) = Sum_{k=0..n} (k!)^2 * abs(Stirling1(n,k)).
3
1, 1, 5, 50, 842, 21644, 792676, 39297600, 2536525008, 206794669104, 20785423425264, 2525457805492896, 364910211591903072, 61847041340997089280, 12151693924459271926272, 2739901558132307387349504, 702704348810821821056454144, 203409730893592265642619623424
OFFSET
0,3
LINKS
FORMULA
a(n) ~ exp(1/2) * (n!)^2.
E.g.f.: Sum_{k>=0} k! * (-log(1-x))^k. - Seiichi Manyama, Apr 22 2022
MATHEMATICA
Table[Sum[Abs[StirlingS1[n, k]]*k!^2, {k, 0, n}], {n, 0, 20}]
PROG
(PARI) a(n) = sum(k=0, n, k!^2*abs(stirling(n, k, 1))); \\ Michel Marcus, Oct 14 2018
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, k!*(-log(1-x))^k))) \\ Seiichi Manyama, Apr 22 2022
(Magma) [(&+[Abs(StirlingFirst(n, k))*(Factorial(k))^2: k in [0..n]]): n in [0..20]]; // G. C. Greubel, Oct 14 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Oct 13 2018
STATUS
approved